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Abstract—Alternative splicing, an unknown mechanism
20 years ago, is now recognized as a major mechanism
for proteome and transcriptome diversity, particularly in
mammals—some researchers conjecture that up to 90% of
human genes are alternatively spliced. Despite much research
on exon and intron evolution, little is known about the
evolution of transcripts.

In this paper, we present a model of transcript evolu-
tion and an associated algorithm to reconstruct transcript
phylogenies. The evolution of the gene structure—exons
and introns—is used as basis for the reconstruction of
transcript phylogenies. We apply our model and recon-
struction algorithm on two well-studied genes, MAG and
PAX6, obtaining results consistent with current knowledge
and thereby providing evidence that a phylogenetic analysis
of transcripts is feasible and likely to be informative.

Keywords-alternative splicing; transcript; evolution;

I. INTRODUCTION

Alternative splicing is a mechanism to produce different

proteins from the same gene—the end of the paradigm

“one gene, one protein.” In many genomes, several,

or even most, genes are split into pieces called exons,

separated by regions called introns, and a splicing mech-

anism takes the transcribed string of exons and introns,

removes the introns, and splices the exons to form a single

continuous string that is then translated into a protein.

In alternative splicing, a mechanism underestimated until

1990, the splicing produces variants in which some of the

exons can be omitted (and occasionally even some of the

introns retained), thereby causing different proteins to be

produced. Alternative splicing exists to some degree in

most eukaryotes, but is most frequent in the more complex

lineages. Thus it is present, but limited, in plants and

fungi, but quite common in vertebrates—some researchers

have conjectured that up to 90% of the human genes

are alternatively spliced [1]–[3]. Alternative splicing is

now recognized as a major mechanism for proteome and

transcriptome diversity [4], [5].

The implications of this shift in paradigm are signifi-

cant. The basic model of transcriptome evolution—DNA

modification at the gene level and alternative transcription

start sites—is incomplete: any modification that affects the

splicing mechanism has to be considered. However, while

evolution of DNA at the gene level has been the subject of

intense scrutiny for decades, very little is known regarding

the changes in the splicing products of alternative splicing.

Thus there is a need to define a model of evolution for

transcripts, not at the nucleotide level, but at the splicing

level—which exons (and introns) are included, which

excluded?

A better understanding of the relationships among dif-

ferent transcripts would benefit annotation transfer. Differ-

ent proteins from one gene may have different functions,

may be localized to certain tissues, or may be present

at different developmental stages. Knowledge of their

evolution would help in assessing the function of their

homologues. Transcript phylogenies would also contribute

to next-gen sequencing methods, especially RNA-seq. For

instance, the “DREAM6 Alternative Splicing Challenge”

asks to reconstruct alternatively spliced mRNA transcripts

from short mRNA-seq data without a reference genome,

but using the transcriptomes of other organisms [6]. A

transcript phylogeny would help in assessing the support

value of a predicted transcript.

In this paper, we propose a model of transcript evolu-

tion and an associated algorithm to reconstruct transcript

phylogenies.

II. TRANSCRIPT EVOLUTION

A. Background

Many studies have been published on the rate of exon

insertion and deletion and on the statistics of differ-

ent types of splicing, but few researchers so far have

studied the evolution of transcripts [2]. Harr and Turner

showed that most transcripts among Mus subspecies were

novel [7]. Nurtdinov et al. compared the human and mouse

transcriptomes and concluded that half of the genes give

rise to species-specific isoforms and only three quarters

of all isoforms are present in their orthologous genes [8].

Splicing is also affected by non-DNA events. Modification

of the chromatin structure can yield changes in the ex-

pression of a given transcript and may even create a new

transcript or silence an existing one [1]. Finally, a few

groups studied the correlation between gene duplication

and alternative splicing [9]–[11].

These studies indicate that alternative splicing is a fast-

evolving mechanism and hint that most of the transcripts

may be little more than evolutionary noise. These studies

also indicate that groups of species share a significant

number of transcripts, whose relationship can only be

delineated with a more complete model.

B. A model of transcript evolution

In the description of alternative splicing, the simplest

concepts are those of constitutive exons, which are part of
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Table I
ALL EVOLUTIONARY CHANGES FOR TRANSCRIPTS FOR A GIVEN

EXON AT THE GENE LEVEL. 1C : CONSTITUTIVE EXON, 1A :
ALTERNATIVE EXON, 0: NO EXON

↗ 0
0 No transcript had this exon and none will have it.

1A Some transcripts had this exon and none will have it.
1C All transcripts had this exon and none will have it.

↗ 1A
0 No transcript had this exon and some will have it.

1A Some transcripts had this exon and some will have it.
1C All transcripts had this exon and some will have it.

↗ 1C
0 No transcript had this exon and all will have it.

1A Some transcripts had this exon and all will have it.
1C All transcripts had this exon and all will have it.

every transcript, and of cassette exons, which may or may

not be present in any given transcript. In general, any exon

that is not constitutive is called alternative. There exists

other types of splicing mechanisms, of which alternative

3’- or 5’-sites and intron retention are the most frequently

cited [1], [3], [5], [12], [13]. Note that the definition of a

constitutive exon requires that all transcripts for a given

gene be known. If, however, alternative splicing is closer

to a biased random sampling from the space of all possible

isoforms (so that every possible splice form is produced

at some or other time), then there may be no such thing as

a constitutive exon. As the debate on this issue continues

and as our aim is to provide a model against which to

test various hypotheses regarding transcript evolution, we

develop a model in which we consider the existence of

constitutive exons as a given.

We thus model a transcript as a subset of the gene exons.

We model alternative 3’- or 5’-sites as constitutive exons

with two or more internal states—each state encoding for

one particular configuration. Finally, we assimilate intron

retention to cassette exons. We model transcript evolution

as a two-level process. The gene structure, viewed in

terms of its collection of exons and introns, constitutes one

level, while the collection of transcripts obtained from that

structure constitutes the other level. Modification of the

gene structure affects the transcriptome, but modification

of the transcriptome does not affect the gene structure.

Peng and Li [14] showed that the status of an exon,

constitutive or alternative, is conserved through tandem

exon duplication, a finding that hints at a model of

evolution where the status of an exon is encoded at the

gene level. Consequently we have three possible exon

states in our model: absent, constitutive, or alternative.

We assume that all transitions—birth, death, and mutation

between constitutive and alternative—are equally likely.

In addition to the model of exon evolution at the gene

level, transcripts can gain or lose exons. Table I sums up

the possible evolutionary changes at the transcript level,

given the evolution of a particular gene exon.

Finally we assume that a transcript can undergo a lethal

mutation or be subject to regulation and disappear at any

time. By extension, new transcripts may also be created

at any time during evolution.

This model yields a forest of transcript trees, which

represents the evolution from ancestral transcripts to ob-

served transcripts. Each transcript tree is a subtree of the

gene tree, since all transcripts arise from that gene family

and, if they evolve, must evolve on the same tree. If a new

transcript arises from an existing one, the new transcript

will be considered as the root of a new transcript tree.

Our basic model uses a fixed cost for the creation

of new transcripts. Of course, the basic model does not

assume that transcripts are created ab initio; rather, it

postulates a hidden relationship with an unknown ancestor.

New transcripts arise from existing ones and thus are

the result of evolutionary changes that may legitimately

correspond to different costs. We use a fixed cost for

simplicity and also because it leads to a very efficient

pruning of the search space. We have designed and

implemented an extended model in which the creation

of a new transcript is dynamically assigned a cost that

corresponds to its evolution from its closest ancestor (a

maximum parsimony approach). However, the dynamic

cost computation prevents good pruning and makes the

problem intractable for even medium-sized instances, as

discussed in Section IV-D.

For the reconstruction algorithm, we used a maximum

parsimony approach, using Dollo’s parsimony—that is, an

exon cannot be created twice [15], [16].

III. RESULTS

The algorithm was tested on two well-studied genes to

assess the correctness of the model on biological data.

Further testing was done on simulated data to test the

algorithm itself.

A. Results on the MAG gene

The Myelin-Associated Glycoprotein (MAG) is a neu-

ronal transmembrane glycoprotein which acts both as a

ligand for an axonal receptor and as a receptor for an

axonal signal [17]. It has been extensively studied and

due to its short length and limited alternative splicing, it

makes a perfect candidate for testing our algorithm.

Two main isoforms are known in mammals: L-MAG

and S-MAG. The S-MAG is created by the inclusion of

the penultimate exon that creates an early stop codon.

In rodents the second exon is also alternatively spliced

and occurs in both the S- and L- forms, yielding four

transcripts in total [18]. Two major MAG isoforms have

been observed in both zebrafish and fugu: L-tail (exon 9,

from the left, is skipped) and XL-tail. The retention of the

eighth intron in the fugu fish yields a third form (S-tail),

which is not observed in the zebrafish [19].

1) Data: Transcripts and exons for the five species

were compiled from the literature [17]–[21]. The se-

quences and the gene tree, as shown in Figure 2-A, were

obtained from the Ensembl database [22].

We concatenated the gene’s exons and aligned the

resulting sequences using Mauve [23]. Every exon either
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Figure 1. Orthologous exons of the MAG gene for the five species.
A gray background indicates orthologous exons. Constitutive exons are
shown in black.
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Figure 2. Gene trees for the MAG and the PAX6 gene.

was not aligned to any other exon or provided close to

one hundred percent coverage of its ortholog. The only

exception was the first human exon, which corresponds

to the first two exons of the rodents. Such a situation

might have posed a problem had the human exon been

alternative, but fortunately it is a constitutive exon. The

eighth intron of the fugu fish, which triggers an early

stop codon, could not be aligned to any exon in any other

species. Orthologous exons were then inferred from this

alignment and are shown in Figure 1.

2) Results: We tested two setups. In the first exper-

iment, we used a cost of infinity for exon gain/loss,

cE = ∞, whereas in the second we used a unit cost,

cE = 1. In both setups, the cost of transcript birth, cB ,

and death, cD, was set to a single parameter and varied.

As shown in Figure 3, each experiment yielded solutions

consistent with our biological knowledge of the isoforms.

The S- and L-forms in mammals and the L- and XL-tail

in fishes are clustered on their respective trees. However,

the relationship between the fish and mammal isoforms is

unclear. If the cost of exon gain is infinity, then the only

relation between fishes and mammals is a link from the

S LXL Lα SβSα LβS LL XL

Fugu Zebr. Human Mouse Rat
Lα SβSα LβS LXL Lα SβSα LβS LL XL

Fugu Zebr. Human Mouse Rat
Lα SβSα Lβ

S LXL Lα SβSα LβS LL XL

Fugu Zebr. Human Mouse Rat
Lα SβSα Lβ

A. B.

C.

X

S LXL Lα SβSα LβS LL XL

Fugu Zebr. Human Mouse Rat
Lα SβSα Lβ

D.

A. cB = cD ≤ 2 and cE = 1
B. cB = cD > 0 and cE =∞
C. cB = cD > 2 and cE = 1
D. Extended model cD = 1 and cE = 1

Figure 3. Inferred transcript phylogenies for the MAG gene under
different costs. Transcripts Sβ and Lβ in rodents represent the S- and
L-forms in which exon 2 is skipped. Thicker trees contain similar tran-
scripts. Only solutions with a minimal number of events are displayed.

L-tail to the alternative L-form in rodents—but our model

requires such a link, since it requires that all genes be

connected. The same reasoning applies for cB = cD ≤ 2
and cE = 1. The cost of connecting a mammal transcript

to a fish transcript is always greater than the cost of

adding a new tree. The S-tail in the fugu fish is isolated

and shows no relation to the S-form of mammals. Its

distance to the mammal S-form is too great to allow the

two to be clustered. There is no evidence that those two

transcripts are biologically related, nor do their sequences

align well—their only common feature is that both induce

an early stop codon.
3) Results with the extended model: Since the search

space for the MAG instance is small, we were able to run

the extended model on it. As seen in Figure 3-D, the result

is the same as for the basic model using cB = cD > 2,
except that newly created transcripts are linked to their

closest ancestor.

B. Results on the PAX6 gene
The PAX6 gene is part of the well-studied paired box

gene family (PAX), which encodes transcription factors

for many developmental processes and is subject to heavy

alternative splicing [24]–[26]—41 transcripts were found

in a gene in the pigeon retina [27]. The canonical isoform

is characterized by an N-terminal paired domain followed

by a linker, a paired-type homeodomain, and a (P/S/T)-

rich C-terminal domain, yielding a 422-amino-acid protein

(437 in zebrafish). The gene undergoes alternative splicing

and the best-known alternative isoform, +5a, differs from

the canonical isoform by the inclusion of exon 5a. This

14-amino-acid insertion in the paired domain disrupts

the DNA-binding ability of the N-terminal domain and

enhances the binding of the C-terminal domain, thus

creating a new set of interactions [28]. As can be seen in

Figure 2-B, gene duplication occurred in the fish species

leading to two PAX6 genes in the zebrafish and the fugu

fish.
1) Transcripts and orthologous exons: Mammal tran-

scripts were obtained from the Human-transcriptome

Database for Alternative Splicing (H-DBAS) [29] and fish

transcripts from the Ensembl database [22]. In the H-

DBAS database, we considered only transcripts that were

present in both the cDNA and mRNA databases, except in

the case of R. norvegicus, where only the mRNA database

was available. Similarly, with the Ensembl database, we

used only transcripts that had CDS or UTR support. The

gene tree was obtained from the Ensembl database and

genes are thus named accordingly. The canonical and

the +5a transcripts were identified through their protein

product and the literature.
The literature on the PAX6 gene in the fugu fish is

very sparse—we could find only one article, by Miles

et al. [30], but that article does not corroborate the

information in the Ensembl database. Thus we used the

Ensembl data, as it is more recent, but we have no ground

truth regarding the canonical or alternative isoforms.
The H-DBAS database conveniently indicates ortholo-

gous exons for the mouse, rat, and human. We ran an all-
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Figure 4. Orthologous exons of the PAX6 gene for the 7 genes of the
5 species. A gray background indicates orthologous exons. Constitutive
exons are shown in black. Alternative 3’- and 5’-end are shown in gray.
Note that only exons belonging to a transcript are shown.

Rat – PAX6

Mouse – PAX6

Human – PAX6 Zebrafish – pax6b

Zebrafish – PAX6 (2 of 2)
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Figure 5. Transcripts for the PAX6 genes. The canonical isoforms are
shown in black and the +5a isoforms in gray. Note that several transcripts
are translated into the same isoform.

against-all semi-global alignment of all exons to confirm

the mammalian orthologs and to obtain the orthologs for

the two fishes. Orthologous exons are shown in Figure 4

and transcripts in Figure 5. In all species, we observe that

several transcripts can produce the same isoform.

2) Results: As with the MAG gene, we tested two

setups, with unit and infinite costs for exon gain or loss.

However no solution could be found with cE = ∞.

Figure 6 reveals a correlation between cB , cD and the

number of ancestral transcripts. A higher cB affects the

total number of trees. Any hypothesis should thus be tested

under different parameters before drawing any conclusion.

The best result uses cB = cD = 5, showing well-clustered

isoforms within mammals. Note that the model imposes a

link between all genes, so that the relevance of a single

connection between fishes and mammals at low values of

cB is uncertain.

The number of solutions with minimum cost also in-

creases along with cB and cD. The algorithm returns 36

solutions of equal cost for cB = cD = 5. However, if

a random gene tree is used, this number gets about 10

times larger for the same parameters—a change that gives

us confidence that phylogenetic information is indeed

contained in the transcripts. Note that Figure 6 shows only

solutions that have a minimum number of evolutionary

events among solutions of minimum cost.

RatMouseHumanZebrafish
pax6a

Fugu
O93435 FUGRU

Fugu
PAX6 (2 of 2)

RatMouseHumanZebrafish
pax6a

Fugu
O93435 FUGRU
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RatMouseHumanZebrafish
pax6a

Fugu
O93435 FUGRU

Fugu
PAX6 (2 of 2)

cB = cD = 1

cB = cD = 5

cB = cD = 10

Zebrafish
pax6b

Zebrafish
pax6b

Zebrafish
pax6b

Canonical isoform
+5a isoform

Figure 6. Transcript phylogenies for the PAX6 gene for different
values of transcript birth, cB , and death, cD . Multiple solutions are
superimposed. Thicker lines connect similar isoforms.

Gene tree

G1: 2 transcripts
G2: 2 transcripts
G3: 1 transcript

G1 G2 G3

Topologies

G1 G2 G3

Figure 7. The 9 topologies corresponding to a trivial 3-gene example.
In a topology, a dot represents a transcript birth and a square a
transcript death. Grayed out topologies are not valid as some genes are
unconnected.

C. Results on simulated data

In order to test the performance of the algorithm, we

designed a simple scheme to generate transcripts with a

given tree structure. Starting with nT transcripts at the

root and nE random exons, each gene exon can either

be born or die independently along the tree. The same

evolutionary process applies to transcripts with exon gain

or loss depending on the current set of gene exons.

The reconstruction algorithm works by splitting the

search space into topologies—a topology being a forest

of transcript trees whose leaves are not assigned. Figure 7

illustrates the topology space on a simple 3-gene example.

The algorithm first explores the topology space rapidly

then finds the best leaf assignment on good candidates.

(More details are given in Section IV.) The search on the

topology space is optimal, but under unfavorable circum-

stances may explore the entire search space. For a given

number of genes, we tested the algorithm on caterpillar
trees (trees where one of the two children is always a leaf)

with a random number of ancestral transcripts. Caterpillar
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Figure 9. Optimality of the leaf assignment algorithm for caterpillar
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trees represent difficult instances since the depth of the tree

is maximized for the number of leaves. Figure 8 shows

that the percentage of topologies that get passed on to the

leaf assignment procedure decreases quickly as the number

of leaves increases. The size of the search space grows

faster than exponential, but the search procedure reduces

the growth rate of the number of refined topologies.

As the leaf assignment algorithm is not optimal, we

tested how often it yielded the best solution. Given a gene

tree and its associated transcripts, for every topology, every

possible transcript assignment is generated. The best score

is retained and tested against the solution proposed by

the leaf assignment algorithm. We define optimality as

the percentage of occurrences where the leaf assignment

algorithm yielded the same score as the optimal solution

during a single run. We performed one hundred runs,

each with randomly generated hundred-exon genes, on

difficult trees (caterpillar trees) and tested the optimality

for different numbers of genes and of transcripts per gene.

(The sizes of the instances are necessarily limited by the

exhaustive search.) Figure 9 shows that, as expected, the

optimality decreases as the number of leaves or transcripts

increases.

We also tested the algorithm for scalability, since the

running time grows faster than exponential in the worst

case. Running the algorithm on the MAG gene takes a

few seconds while running it on the PAX6 gene takes

a few days. However our focus in this paper is to vali-

date the concept of transcript phylogenies and show that

reconstruction, within some limits, is possible. Past this

step, we are confident that a heuristic can be designed to

handle large problems with reasonable accuracy.

IV. METHODS

The input of the algorithm is a gene tree with a set of

leaf transcripts and orthologous exons. (Paralogous exons

are considered as unrelated.)

The algorithm begins by reconstructing the state

of the ancestral genes’ exons—absent, alternative, or

constitutive—using Sankoff’s algorithm for the small par-

simony problem [31], since exons can have more than 2

states. Without any further knowledge on exon evolution,

we assumed that every transition has equal cost. A con-

straint is added to the algorithm to ensure that the result

is consistent with Dollo parsimony—that an exon cannot

be created more than once.

Transcript phylogenies are then reconstructed using a

two-step algorithm. For each topology, a lower bound is

computed. If the lower bound is higher than the minimum

encountered so far, then the topology is discarded, since

there could not exist a solution with this topology with a

lower score than the current optimum. Otherwise the best

solution for this topology is computed. We call this last

step the leaf assignment step; it is the only part of the

algorithm that makes use of the previously reconstructed

evolution of the gene’s exons.

Now, in order to prune the search space efficiently, we

need to establish quickly a rather good solution. Since the

algorithm explores the topology space in a deterministic,

breadth-first search manner, it could, in the worst case,

move from worst to best topology, improving the score

at each step, and thus unable throughout the procedure

to prune any part of the solution space. To make such

a behavior extremely unlikely on any data, we establish

initial solutions by randomly sampling the search space for

each number of trees before the exploration of the search

space starts and retaining the configuration with the lowest

score as an upper bound.

When all topologies have been tested or scored, the

algorithm returns all solutions of minimum cost. This

process is described more precisely in Algorithm 1.

Our model makes no distinction between an event of

zero cost and no event at all. Yet we would like to see

only solutions that have the lowest number of events, so

our algorithm uses (a version of) the number of events as

a secondary criterion to rank the optimal solutions. For

each tree in a given solution, we sum over all leaves the

exons that are present in at least two leaves, then divide

this value by the number of exons that are present in at

least one leaf and by the number of leaves. The result is

an index between 0 (all exons are unique to their leaves)

and 1 (all leaves have the same exons).

A. Generating topologies

Topologies are generated with increasing numbers of

trees. For each topology with t trees (t-topology), any

edge removal yields a new topology with t + 1 trees.

However, that process alone does not suffice to generate
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Algorithm 1 Inference of transcript trees.

SMIN ← minimum score of the random walk

i← minimum number of trees

while cB · i ≤ SMIN and i ≤ max number of trees do
TOPS ← List of all topologies with i trees

t← first item in TOPS
while t is not null do

if LOWERBOUND(t) ≤ SMIN then
S → Score of the best leaf assignment

if S < SMIN then
SMIN ← S

end if
end if
t← next item in TOPS

end while
i← i+ 1

end while
return all solutions that have a score equal to SMIN

all (t + 1)-topologies. Therefore, once that procedure

has been applied to all t-topologies (and duplicates have

been removed), we use branch-swapping to generate the

remaining (t+ 1)-topologies. A branch swap disconnects

edge (n1, p1) from tree t1 and edge (n2, p2) from tree t2
and creates two new edges: (n1, p2) and (n2, p1). Here

n1 and n2, and also p1 and p2, represent transcripts from

the same ancestral gene. The algorithm again checks for

duplicates, as it searches for all branch swaps on the set of

(t+1)-topologies until no new topology can be generated.

B. Scoring solutions and topologies

The score of a particular solution is composed of two

parts, the first reflecting the structure of the trees and the

second, SF , providing the parsimony score of the trees.

The cost of creating or losing a transcript is a constant

and thus we have

S = (cB ·Ntree + cD ·Ndeath) + SF (1)

where Ntree is the number of trees, Ndeath the total

number of transcript losses, and SF the sum of the

maximum parsimony scores of each tree. SF is the only

quantity that depends on the evolution of the gene’s exons.

cB and cD are parameters that control the cost of transcript

birth and death.

A lower bound for topologies can be computed by

considering the first part of the scoring function, cB ·
Ntree + cD · Ndeath. This value does not depend on

the transcripts, but only on the topology. However, a

better lower bound can be computed by adding a lower

bound on the SF score. For each tree, we compute the

best leaf assignment as if all transcripts were available,

corresponding to a topology with a single nontrivial tree.

(In the real leaf assignment procedure, of course, trees

compete for transcripts.) The sum of these values is a

true lower bound.

A

CB

D E F G

Gene tree A topology T The guide tree
for topology T

3 tr. 2 tr. 2 tr.3 tr.

Figure 10. The guide tree for a given topology. Topology: There are
two ancestral transcripts at A. Another transcript is created at B, two are
lost between B and E, and a new transcript is created at E. A similar
reasoning applies to C, F , and G. Guide tree: Boxes in the guide tree
indicate a specific subtree. For instance, at B, we have only two kinds
of subtrees: B(D, E) and B(D,−), thus we have two boxes. Within a
box, each dot represents a transcript. At B we have two transcripts with
subtree B(D,−), thus there are two dots in the second box.

C. Leaf assignment procedure

Given a topology, leaf assignment remains challenging:

given N genes and k transcripts per gene, a topology can

lead to k!N−1 possible leaf assignments. To tackle this

problem, we combine a bottom-up dynamic programming

algorithm with Sankoff’s algorithm for the small parsi-

mony problem.

We define a state as an ordered list of transcripts for

a given gene. Each transcript t in a state has pointers

to its left and right children, l(t) and r(t)—if any. The

ordering of the transcripts is the same in two states of the

same gene, but the pointers change to reflect phylogenetic

relationships. The number of transcripts of ancestral genes

(inner nodes) is defined by the topology.

For each ancestral gene, every possible state is gener-

ated. If a gene has kLR transcripts that have two children,

kL transcripts with a single left child, kR transcripts with

a single right child, and both children of the gene have n
transcripts, then we have up to

(
n

kLR

)
· n!
(n− kLR)!

·
(
n− kLR

kL

)
·
(
n− kLR

kR

)
(2)

possible states. The product of the first two terms of

Equation 2 is the number of possible assignments for

the kLR transcripts that have two children, while the last

two terms compute the number of assignments for the

transcripts that have only child. Since the first part selected

kLR elements, there remains only n − kLR elements to

choose from.

However, this number is constrained by the topology:

a transcript in some state cannot be connected to any

transcript in its child’s state—the subtrees have to match.

We represent these constraints through a guide tree, which

indicates the possible interactions for each transcript. Fig-

ure 10 illustrates the guide tree for an example topology.

There could be up to 18 states at node A without the

topology constraints, but these reduce the number down

to just 4.

Our algorithm traverses the gene tree in postorder; at

each node N , it computes the parsimony score of each

state. Given a gene N , its parent P , and its two children
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L and R, the score for a given state s of N is given by

S(sN , sP ) = min
sR∈R,sL∈L

{S(sR, sN ) + S(sL, sN )

+
∑
t∈T

minMP(t) s.t. T = roots(sN , sP )}

(3)

where roots(sA, sparent) contains all transcripts of sA that

have no ancestor in sparent. (If sparent is null then it is

the set of transcripts in sA.)

minMP(t) is the parsimony score of transcript t as

inferred by Sankoff’s algorithm. A profile is built for each

exon and the score of exon i in state u is computed by

tiu = min
x∈E
{c(u, x) + rix}+min

y∈E
{c(u, y) + liy}

where l and r are the left and right children of transcript t,
c(a, b) is the cost of evolving from a to b and E is the set

of all exon states. In our case we have c(a, b) = 0 for a =
b and c(a, b) = 1 otherwise. However the cost function

must be slightly modified to account for exon evolution

at the gene level. If a constitutive exon was gained or an

exon was lost (at the gene level), then we set the cost

of the change to zero. Additionally, if exon i is absent

in the gene, then for all transcripts in the gene we have

tix =∞, ∀x > 0. Note that the left and right children of t
depend on the choice of sL and sR. A similar equation can

be derived in case of single-child transcripts. minMP(t) is

then the sum over all exons of minu tiu.

The quantities of 3 are built up during the postorder

traversal; once the score of every state at the root of

the gene tree has been computed, the minimum score is

retained. Backtracking from the root to the leaves will then

produce all optimal transcript phylogenies.

D. An extended model

The extended model sets a dynamic cost for transcript

birth, but retains a constant cost for transcript death. Given

a topology, the best leaf assignment is computed and back-

tracking is used to reconstruct the ancestral transcripts’

sequences. Creation of new transcripts is assigned a cost

that corresponds to its evolution from its closest ancestor.

The birth cost is added only once the leaf assignment

procedure has terminated and thus has no influence on the

transcript assignment, except in case of multiple solutions,

where only those that have a minimum birth cost will be

selected.

Developing a good lower bound on the birth cost

remains a challenge. This cost can vary between zero

and the number of exons, so that simply using the lowest

possible value would produce very loose bounds and thus

be of no help in the search. (On simulated data and our

two test genes, the search procedure using a zero value

as a bound on the birth cost always had to look at every

topology.)

V. CONCLUSION

In this study we addressed the lack of evolutionary

model for alternative splicing by presenting a two-level

model of transcript evolution and an algorithm to recon-

struct transcript phylogenies. Our work opens the door for

the study of transcript evolution, as it provides tools for

testing evolutionary hypotheses.

We presented two models. The basic model uses a fixed

cost for the creation of new transcripts—an unrealistic

assumption, but one that greatly decreases the computa-

tional cost. The extended model assigns a cost dynamically

by finding the closest (least cost) ancestor; however, the

dynamic nature of the cost defeats our pruning strategy

and the problem became intractable for medium-sized

instances.

Results on a well-studied gene, MAG, showed that the

extended model yielded results similar to those obtained

with the basic model. Good clustering of known isoforms

was achieved with the basic model for both gene families

(MAG and PAX6) we studied.

Future work involves a faster version of the algorithm,

and eventually approximation methods to enable us to use

the extended model on large problems.
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