
MAXIMUM LIKELIHOOD PHYLOGENETIC RECONSTRUCTION

FROM HIGH-RESOLUTION WHOLE-GENOME DATA

AND A TREE OF 68 EUKARYOTES

YU LIN∗

Laboratory for Computational Biology and Bioinformatics, EPFL,
Lausanne VD, CH-1015, Switzerland

∗E-mail: yu.lin@epfl.ch

FEI HU and JIJUN TANG

Department of Computer Science and Engineering, University of South Carolina,
Columbia, SC 29208, USA

E-mail: {hu5,jtang}@cse.sc.edu

BERNARD M.E. MORET

Laboratory for Computational Biology and Bioinformatics, EPFL,
Lausanne VD, CH-1015, Switzerland

E-mail: bernard.moret@epfl.ch

The rapid accumulation of whole-genome data has renewed interest in the study of the evolution
of genomic architecture, under such events as rearrangements, duplications, losses. Comparative
genomics, evolutionary biology, and cancer research all require tools to elucidate the mechanisms,
history, and consequences of those evolutionary events, while phylogenetics could use whole-genome
data to enhance its picture of the Tree of Life. Current approaches in the area of phylogenetic analysis
are limited to very small collections of closely related genomes using low-resolution data (typically a
few hundred syntenic blocks); moreover, these approaches typically do not include duplication and
loss events. We describe a maximum likelihood (ML) approach for phylogenetic analysis that takes
into account genome rearrangements as well as duplications, insertions, and losses. Our approach
can handle high-resolution genomes (with 40,000 or more markers) and can use in the same anal-
ysis genomes with very different numbers of markers. Because our approach uses a standard ML
reconstruction program (RAxML), it scales up to large trees. We present the results of extensive
testing on both simulated and real data showing that our approach returns very accurate results
very quickly. In particular, we analyze a dataset of 68 high-resolution eukaryotic genomes, with from
3,000 to 42,000 genes, from the eGOB database; the analysis, including bootstrapping, takes just 3
hours on a desktop system and returns a tree in agreement with all well supported branches, while
also suggesting resolutions for some disputed placements.
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1. Introduction

1.1. Overview

Phylogenetic analysis is one of the main tools of evolutionary biology. Most of it to date has
been carried out using sequence data (or, more rarely, morphological data). Sequence data can

be collected in large amounts at very low cost and, at least in the case of coding genes, is rela-

tively well understood, but it requires accurate determination of orthologies and gives us only



local information—and different parts of the genome may evolve at different rates or according

to different models. Events that affect the structure of an entire genome may hold the key to
building a coherent picture of the past history of contemporary organisms. Such events occur

at a much larger scale than sequence mutations—entire blocks of a genome may be permuted
(rearrangements), duplicated, or lost. As whole genomes are sequenced at increasing rates,

using whole-genome data for phylogenetic analyses is attracting increasing interest, especially
as researchers uncover links between large-scale genomic events (rearrangements, duplications

leading to increased copy numbers) and various diseases (such as cancer) or health condi-
tions (such as autism). However, using whole-genome data in phylogenetic reconstruction has

proved far more challenging than using sequence data and numerous problems plague exist-
ing methods: oversimplified models, poor accuracy, poor scaling, lack of robustness, lack of

statistical assessment, etc.

In this paper, we describe a new approach that resolves these problems and promises to
open the way to widespread use of whole-genome data in phylogenetic analysis.

1.2. Prior work

Rearrangement data was first used in phylogenetic analysis 80 years ago by Sturtevant and

Dobzhansky,1 but largely ignored for the next 45 years, until revived by Palmer and Thomp-
son2,3 and Day and Sankoff.4 In the last 30 years, models of whole-genome evolution, their

corresponding distance measures, and algorithms for reconstructing phylogenies under such
models, have been the subject of intense research, for which see the text of Fertin et al.5 As

in sequence-based phylogenetic reconstruction, approaches based on whole-genome data can
be classified in three main categories.

Parsimony-based approaches seek the tree and internal genomes that minimize the total
number of events needed to produce the given genomes from a common ancestor. Blanchette

et al. introduced the first algorithmic approach to the reconstruction of a phylogenetic tree to
minimize the total number of breakpoints—adjacencies present in one genome, but absent in

the other.6 Moret et al. reimplemented this approach in their GRAPPA tool and extended it
to inversion distances—inversions being the best documented of the hypothesized mechanisms

of genomic rearrangements.7 GRAPPA focused on unichromosomal genomes; to handle multi-
chromosomal genomes, Bourque and Pevzner proposed MGR,8 based on GRAPPA’s distance

computations. Whereas BPAnalysis and GRAPPA search all trees and report the one with
the best score (an approach that limits GRAPPA to trees of 15 taxa unless combined with

the DCM approach of Tang and Moret9), MGR uses a heuristic sequential addition method to

grow the tree one species at a time. This heuristic approach trades accuracy for scalability, yet
MGR does not scale well—in particular, it cannot be used to infer a phylogeny from modern

high-resolution data. These various methods are all limited to rearrangements—extensions to
handle genea duplications, insertions and losses appear extremely complex and would further

limit their scalability.

aWe use the word “gene” as this is in fact a common form of whole-genome data, but other kinds of markers
could be used; more generally, the constituents are syntenic blocks.



Distance-based approaches first estimate the pairwise distances between every pair of

leaves, then apply a method such as Neighbor-Joining10 or FastME11 to reconstruct the phy-
logeny from the matrix of pairwise distances. For unichromosomal genomes under inversions,

transpositions, and inverted transpositions, Wang and Warnow showed how to estimate a
true evolutionary distance from the number of breakpoints.12,13 For unichromosomal genomes

evolving under inversions only, an experimental approach was used by Moret et al. to de-
rive an estimate from the inversion edit distance, yielding greatly increased accuracy in tree

estimation under both distance and parsimony methods.14 For multichromosomal genomes,
rearrangement operations can be modeled by a single operation called “Double-Cut-and-Join

(DCJ)”.15 Lin and Moret developed a procedure to estimate the true evolutionary distance
between two genomes under the DCJ model;16 Lin et al. then refined the estimator to include

gene duplication and loss events,17 although that estimator requires knowledge of the direction

of time, something usually missing in phylogenetic estimation. The accuracy of distance meth-
ods depends entirely on the accuracy of distance estimation and any distance estimator suffers

from the saturation problem: as the measured distance increases beyond a certain threshold,
the variance in the estimator grows significantly.

Maximum-likelihood (ML) approaches seek the tree and associated model parameters that
maximize the probability of producing the given set of leaf genomes. Theoretically, such ap-

proaches are much more computationally expensive than both distance-based and parsimony-
based approaches, but their accuracy has long been a major attraction in sequence-based phy-

logenetic analysis. Moreover, in the last few years, packages such as RAxML18 have largely
overcome computational limitations and allowed reconstructions of large trees (with thousands

of taxa) and the use of long sequences (to a hundred thousand characters). It was not until
last year, however, that the first successful attempt to use ML reconstruction based on whole-

genome data was published;19 results from this study on bacterial genomes were promising,
but somewhat difficult to explain, while the method appeared too time-consuming to handle

eukaryotic genomes.

2. Methods

Our approach encodes the whole-genome data into binary sequences using both gene adja-
cencies and gene content, then estimates the transition parameters for the resulting binary

sequence data, and finally uses sequence-based ML reconstruction to infer the tree. We call
our new approach Maximum Likelihood on Whole-genome Data (MLWD).

2.1. Encoding genomes into binary sequences

We represent the genome in terms of adjacency information and gene content as follows. De-

note the tail of a gene g by gt and its head by gh. We write +g to indicate an orientation
from tail to head (gt → gh), −g otherwise (gh → gt). Two consecutive genes a and b can be

connected by one adjacency of one of the following four types: {at, bt}, {ah, bt}, {at, bh}, and
{ah, bh}. If gene c lies at one end of a linear chromosome, then we have a corresponding sin-

gleton set, {ct} or {ch}, called a telomere. A genome can then be represented as a multiset of

adjacencies and telomeres. For example, a toy genome composed of one linear chromosome,



adjacency information content information

{ah, ah} {at, bh} {at, ch} {bt, ct} {ah, dh} {bt, dt} a b c d

Genome 1 1 1 1 1 0 0 1 1 1 0

Genome 2 0 1 0 0 1 1 1 1 0 1

(+a,+b,-c,+a,+b,-d,+a), and one circular one, (+e, -f), can be represented by the multiset of ad-
jacencies and telomeres {{at}, {ah, bt}, {bh, ch}, {ct, ah}, {ah, bt}, {bh, dh}, {dt, ah}, {ah}, {eh, fh},

{et, f t}}. In the presence of duplicated genes, there is no one-to-one correspondence between
genomes and multisets of genes, adjacencies, and telomeres. For example, the genome com-

posed of the linear chromosome (+a,+b, -d,+a,+b, -c,+a) and the circular one (+e, -f), would
have the same multisets of adjacencies and telomeres as our toy example.

For data limited to rearrangements (i.e. for genomes with identical gene content), we
encode only the adjacency information. For a possible adjacency or telomere, we write 1 (or

0) to indicate its presence (or absence) in a genome. We consider only those adjacencies and

telomeres that exist in at least one of the input genomes. If the total number of distinct genes
among the input genomes is n, then the total number of distinct adjacencies and telomeres is
(2n+2

2

)

, but the number of adjacencies and telomeres that appear in at least one input genome
is typically far smaller—in fact, it is usually linear in n rather than quadratic. For the general

model, which includes gene duplications, insertions, and losses in addition to rearrangements,
we extend the encoding of adjacencies by also encoding the gene content. For each gene, we

write 1 (or 0) to indicate the presence (or absence) of this gene in a genome. For the two toy
genomes of Figure 1, the resulting binary sequences and their derivation are shown in Table 1.

2.2. Estimating transition parameters

Since our encodings are binary sequences, the parameters of the model are simply the transition

probability from presence (1) to absence (0) and that from absence (0) to presence (1). Let
us first look at adjacencies. Every DCJ operation will select two adjacencies (or telomeres)

uniformly at random, and (if adjacencies) break them to create two new adjacencies. Each

genome has n+O(1) adjacencies and telomeres (O(1) is the number of linear chromosomes in
the genome, viewed as a small constant). Thus the transition probability from 1 to 0 at some

fixed index in the sequence is 2
n+O(1) under one DCJ operation. Since there are up to

(2n+2
2

)

possible adjacencies and telomeres, the transition probability from 0 to 1 is 2
2n2+O(n) . Thus the

transition from 0 to 1 is roughly 2n times less likely than that from 1 to 0. Despite the restrictive

assumption that all DCJ operations are equally likely, this result is in line with general opinion
about the probability of eventually breaking an ancestral adjacency (high) vs. that of creating

Fig. 1. Two toy genomes.



a particular adjacency along several lineages (low)—a version of homoplasy for adjacencies.
In the general model, we also have transitions for gene content. Once again, the probabil-

ity of losing a gene independently along several lineages is high, whereas the probability of
gaining the same gene independently along several lineages (the standard homoplasy) is low.

However, there is no simple uniformity assumption that would enable us to derive a formula
for the respective probabilities—there have been attempts to reconstruct phylogenies based

on gene content only,20–22 but they were based on a different approach—so we experimented
with various values of the ratio between the probability of a transition from 1 to 0 and that

of a transition from 0 to 1.

2.3. Reconstructing the phylogeny

Once we have the binary sequences encoding the input genomes and have computed the tran-
sition parameters, we use the ML reconstruction program RAxML18 (version 7.2.8 was used to

produce the results given in this paper) to build a tree from these sequences. Because RAxML
uses a time-reversible model, it estimates the transition parameters directly from the input

sequences by computing the base frequencies. In order to set up the 2n ratio, we simply add
a direct assignment of the two base frequencies in the code.

3. Results

3.1. Experimental Design

We ran a series of experiments on simulated datasets in order to evaluate the performance of

our approach against a known “ground truth” under a wide variety of settings. We then ran
our reconstruction algorithm on a dataset of 68 eukaryotic genomes, from unicellular parasites

to mammalians, obtained from the Eukaryotic Gene Order Browser (eGOB) database.23

Our simulation studies follow standard practice in phylogenetic reconstruction.24 We gen-

erate model trees under various parameter settings, then use each model tree to evolve an
artificial root genome from the root down to the leaves, by performing randomly chosen evo-

lutionary events on the current genome, finally obtaining datasets of leaf genomes for which
we know the complete evolutionary history. We then reconstruct trees for each dataset by

applying different reconstruction methods and compare the results against the model tree.

3.1.1. Simulating phylogenetic trees

A model tree consists of a rooted tree topology and corresponding branch lengths. The trees

are generated by a three-step process. We first generate birth-death trees using the tree gen-
erator (from the geiger library) in the software R25 (with a birth rate of 0.001 and a death rate

of 0), which simulates the development of a model tree under a uniform, time-homogeneous
birth-death process. The branch lengths in such trees are ultrametric (the root-to-leaf paths

all have the same length), so, in the second step, the branch lengths are modified as follows.
We choose a parameter c; for each branch we sample a number s uniformly from the interval

[−c,+c] and multiply the original branch length by es (for the experiments in this paper, we

set c = 2). Thus, each branch length is multiplied by a possibly different random number.



Finally, we rescale all branch lengths to achieve a target diameter D (the length of the longest
path, defined as the sum of the edge lengths along that path) for the model tree. (Note that

the unit of “length” is one expected evolutionary operation.)
Our experiments are conducted by varying three main parameters: the number of taxa , the

number of genes, and the target diameter. We used two values for each of the first two param-
eters: 50 and 100 taxa, and 1, 000 and 5, 000 genes. For the third parameter, the diameter of the

tree, we varied it from n to 4n, where n is the number of genes. For each setting of the param-
eters, we generated 100 datasets; data presented below are averages over these 100 datasets.

3.1.2. Simulating evolutionary events along branches in the trees

In the rearrangement-only model, all evolutionary events along the branches are DCJ opera-
tions. The next event is then chosen uniformly at random among all possible DCJ operations.

In the general model, an event can be a DCJ operation or one of a gene duplication, gene
insertion, or gene loss. Thus we randomly sample three parameters for each branch: the proba-

bility of occurrence of a gene duplication, pd, the probability of occurrence of a gene insertion,

pi and the probability of occurrence of a gene loss, pl. (The probability of occurrence of a DCJ
operation is then just pr = 1− pd − pi − pl.) The next evolutionary event is chosen randomly

from the four categories according to these parameters. For gene duplication, we uniformly
select a position to start duplicating a short segment of chromosomal material and place the

new copy to a new position within the genome. We set Lmax as the maximum number of genes
in the duplicated segment and assume that the number of genes in that segment is a uniform

random number between 1 and Lmax. In our simulations, we used Lmax = 5. For gene insertion,
we tested two different possible scenarios, one for genomes of prokaryotic type and the other

for genomes of eukaryotic type. For the former, we uniformly select one position and insert a
new gene; for the latter, we uniformly select one existing gene and mutate it into a new gene.

Finally, for gene loss, we uniformly select one gene and delete it.

3.2. Results for simulations under rearrangements

We compared the accuracy of three different approaches, MLWD, MLWD∗ and TIBA. MLWD
(Maximum Likelihood on Whole-genome Data) is our new approach; MLWD∗ follows the same

procedure as MLWD, but does not use our computation of transition probabilities—instead,
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Fig. 2. RF error rates for different approaches for trees with 50 species, with genomes of 1, 000 and 5, 000
genes and tree diameters from one to four times the number of genes, under the rearrangement model.



it allows RAxML to estimate and set them; finally, TIBA is a fast distance-based tool to

reconstruct phylogenies from rearrangement data,26 which combines a pairwise distance esti-
mator16 and the FastME11 distance-based reconstruction method. We did not compare with

the approaches of Hu et al.19 or those of Cosner et al.,27 because both are too slow and because
the former is also limited by their character encodings to a maximum of 20 taxa. Figures 2

and 3 show error rates for different approaches; the x axis indicates the error rates and the
y axis indicates the tree diameter. Error rates are RF error rates,28 the standard measure of

error for phylogenetic trees—the RF rate expresses the percentage of edges in error, either
because they are missing or because they are wrong.

These representative simulations show that our MLWD approach can reconstruct much
more accurate phylogenies from rearrangement data than the distance-based approach TIBA,

in line with experience in sequence-based reconstruction. MLWD also outperforms MLWD∗,

underlining the importance of estimating and setting the transition parameters before applying
the sequence-based ML method.

3.3. Results for simulations under the general model

Here we generated more complex datasets than for the previous set of experiments. For ex-

ample, among our simulated eukaryotic genomes, the largest genome has more than 20,000

genes, and the biggest gene family in a single genome has 42 members. In our approach,
the encoded sequence of each genome combines both the adjacency and gene content infor-

mation, which makes it difficult to compute optimal transition probabilities, as discussed in
Section 2.2. Thus we set different bias values and compare them under simulation results. If

the transition probability of any gene or adjacency from 0 to 1 in MLWD is set to be m times
less than that in the opposite direction, we name it MLWD(m) (m = 10, 100, 1000). Figure 4

summarizes the RF error rates. Whereas the best ratio in the rearrangement model was 2n (as
derived in Section 2.2), the best ratio under the general model is much smaller. This difference

can be attributed to the relatively modest change in gene content compared to the change in
adjacencies: since we encode presence or absence of a gene, but not the number of copies of

the gene, not only rearrangements, but also many duplication and loss events will not alter
the encoded gene content.
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Fig. 3. RF error rates for different approaches for trees with 100 species, with genomes of 1, 000 and 5, 000
genes and tree diameters from one to four times the number of genes, under the rearrangement model.
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Fig. 4. RF error rates for different approaches for trees with 50 species, with initial genomes of size 1, 000
and 5, 000 and tree diameters from one to four times the number of genes in the initial genome, under the
general model of evolution.

3.4. Results for simulated poor assemblies

High-throughput sequencing has made it possible to sequence many genomes, but the fin-
ishing steps—producing a good assembly from the sequence data—are time-consuming and

may require much additional laboratory work. Thus many sequenced genomes remain broken
into a number of contigs, thereby inducing a loss of adjacencies in the source data. In addi-

tion, some assemblies may have errors, thereby producing spurious adjacencies while losing
others. We designed experiments to test the robustness of our approach in handling genomes

with such assembly defects. We introduce artificial breakages in the leaf genomes by “losing”

adjacencies, which correspondingly breaks chromosomes into multiple contigs. For example,
MLWD-x% represents the cases of losing x% of adjacencies, that is, x% of the adjacencies are

selected uniformly at random and discarded for each genome.
Figure 5 shows RF error rates for MLWD on different quality of genome assemblies under

the rearrangement model. Our approach is relatively insensitive to the quality of assembly,
especially when the tree diameter is large, that is, when it includes highly diverged taxa. Note

that this finding was to be expected in view of the good results of our approach using an
encoding that, as observed earlier, does not uniquely identify the ordering of the genes along

the chromosomes.
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Fig. 5. RF error rates for MLWD on different qualities of genome assemblies, for trees with 50 species, with
genomes of size 1, 000 and 5, 000. with tree diameters from one to four times the number of genes, under the
rearrangement model.



3.5. Results for a dataset of high-resolution eukaryotic genomes

Figure 6 shows the reconstructed phylogeny of 68 eukaryotic genomes from the eGOB (Eu-

karyotic Gene Order Browser) database.23 The database contains the order information of
orthologous genes (identified by OrthoMCL29) of 74 different eukaryotic species. The total

number of different gene markers in eGOB is around 100, 000. We selected 68 genomes for
their size (the number of gene markers) varying from 3k to 42k; the remaining 6 genomes in

the database have too few adjacencies (fewer than 3, 000). We encode the adjacency and gene
content information of all 68 genomes into 68 binary sequences of length 652, 000. We set the

bias ratio to be 100, according to the result of our simulation studies from Section 3.3. Build-
ing this phylogeny (using RAxML with fast bootstrapping) took under 3 hours of computing

time on a desktop computer.

Fig. 6. The reconstructed phylogeny of 68 eukaryotic genomes

The tree is drawn by the tool iTOL;30 the internal branches are colored into green, yellow
and red, indicating, respectively, strong support (bootstrap value > 90), medium support

(bootstrap value between 60 and 90), and weak support (bootstrap value < 60). As shown
in Figure 6, all major groups in those 68 eukaryotic genomes are correctly identified, with

the exception of Amoebozoa. But those incorrect branches with respect to Amoebozoa do
receive extremely low bootstrap values (0 and 2), indicating that they are very likely to be

wrong. For the phylogeny of Metazoa, the tree is well supported from existing studies.31,32

For the phylogeny of model fish species (D. rerio, G. aculeatus, O. latipes, T. rubripes, and



T. nigroviridis), two conflicting phylogenies have been published, using different choices of
alignment tools and reconstruction methods for sequence data.33 Our result supports the

second phylogeny, which is considered as the correct one by the authors in their discussion.33

For the phylogeny of Fungi, our results agree with most branches for common species in recent

studies.34,35 It is worth mentioning that among three Chytridiomycota species C. cinereus, P.
gramnis, and C. neoformans, our phylogeny shows that C. cinereus and P. gramnis are more

closely related, which conflicts with the placement of C. cinereus and C. neoformans as sister
taxa, but with very low support value (bootstrapping score 35).35 C. merolae, a primitive red

algae, has been the topic of a longrunning debate over its phylogenetic position.36 Our result
suggests that C. merolae is closer to Alveolata than to Viridiplantae, in agreement with a

recent finding obtained by sequencing and comparing expressed sequence tags from different

genomes.37

Finally, in order to explore the relationship between gene content and gene order, we ran

MLWD∗ on the 68 eukaryotic genomes using only adjacency information as well as using only
content information. The tree reconstructed from adjacency information only is poor, with

even major clades getting mixed—an unsurprising result in view of the huge variation in gene
content among these 68 genomes. The tree reconstructed from gene-content information only

correctly identifies all major groups except Amoebozoa; however, it suffers from some major
discrepancies with our current understanding of several clades. For example, X. tropicalis is

thought to be closer to mammals than to fishes.38 H. capsulatum, U. reesii, and C. immitis
are considered to be in the same order (Onygenales); together with A. nidulans and A. terreus

they are considered to be in the same class (Eurotiomycetes), but S. nodorum is thought to
belong to a different class (Dothideomycetes).35 In this particular dataset, which is a sparse

sampling of the entire eukaryotic branch of the Tree of Life, most genomes differ significantly
in gene content, so that we would expect the tree based on gene-content information to be

close to that obtained with both gene adjacencies and gene content. For a denser sampling or

for a tree of closely related genomes, adjacency information becomes crucial. A distinguishing
feature of MLWD is that it uses both at once and to good effect.

4. Conclusion

In spite of many compelling reasons for using whole-genome data in phylogenetic recon-
struction, practice to date has continued to use selected sequences of moderate length using

nucleotide-, aminoacid-, or codon-level models. Such models are of course much simpler and
much better studied than models for the evolution of genomic architecture. Mostly though,

it is the lack of suitable tools that has prevented more widespread use of whole-genome data:
previous tools all suffered from serious problems, usually combinations of oversimplified mod-

els, poor accuracy, poor scaling, lack of robustness against errors in the data, and lack of any
bootstrapping or other statistical assessment procedures.

The approach we presented is the first to overcome all of these difficulties: it uses a fairly
general model of genomic evolution (rearrangements plus duplications, insertions, and losses of

genomic regions), is very accurate, scales as well as sequence-based approaches, is quite robust

against typical assembly errors and omissions of genes, and supports standard bootstrapping



methods. Our analysis of a 68-taxon collection of eukaryotic genomes, ranging from parasitic

unicellular organisms with simple genomes to mammals and from around 3,000 genes to over
40,000 genes, could not have been conducted, regardless of computational resources, with any

other tools without accepting severe compromises in the data (e.g., equalizing gene content) or
the quality of the analysis (by using a distance-based reconstruction method). Our analysis also

helps make the case for phylogenetic reconstruction based on whole-genome data. We did not
need to choose particular regions of genomes nor to process the data from the eGOB database

in any manner; in particular, we did not need to perform a multiple sequence alignment.
We were able to run a complete analysis on a “Tree of Life” of all main branches of the

Eukaryota, with very divergent genomes (and hence very large pairwise distances), without
taking any special precautions and without preinterpreting the data (and thus possibly biasing

the output). We could do all of this in a few hours on a desktop machine—in spite of the very

long sequences produced by our encoding. We could run the identical software on a collection
of organellar genomes or of bacterial genomes with equal success (and in much less time).

Naturally, much work remains to be done. In particular, given the complexity of genomic
architecture, current evolutionary models (such as the one we used) are too simple, although

even at that level, we need to elucidate simple parameters, such as the ratio of the transition
probabilities between loss and gain of a given gene. Using different transition probabilities for

adjacencies and for content, by running a compartmentalized analysis, should prove beneficial
on large datasets. Larger issues of data preparation also loom. For instance, moving from an

assembled genome to the type of data we used continues to require manual intervention—
gene-finding, or syntenic block decomposition, are too complex for fully automated proce-

dures. Determination of orthologies, necessary to the identification of syntenic blocks, should
be done on the basis of a known phylogeny: that is, the same interdependence exists at the

whole-genome level between reconstruction and preprocessing (orthology) as at the sequence
level, where it is between reconstruction and alignment. Indeed, most of the methodological

questions that the phylogenetic community has been studying in the context of sequence-

based reconstruction also arise, in suitably modified terms, in the context of whole-genome
data. Our new method provides a first means of empirical enquiry into these questions.
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