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Abstract. As data about genomic architecture accumulates, genomuitarege-
ments have attracted increasing attention. One of the reamangement mech-
anisms, inversions (also called reversals), was charaeteby Hannenhalli and
Pevzner and this characterization in turn extended by warauthors. The char-
acterization relies on the concepts of breakpoints, cyeled obstructions color-
fully named hurdles and fortresses. In this paper, we extiemdvork of Caprara
and of Bergeron by providing simple and exact characteéamatof the probabil-
ity of encountering a hurdle or a fortress in a random pertiartaas well as the
probability of generating one in the process of sorting arpeation if one does
not take special precautions (as in a randomized algorifitinnstance).

1 Introduction

The advent of high-throughputtechniques in genomics lia®lthe rapid accumulation
of data about the genomic architecture of large numbersaxfiep. As biologists study
these genomes, they are finding that genomic rearrangemaitt move single genes
or blocks of contiguous genes around the genome, are ®iattemmon features: en-
tire blocks of one chromosome can be found in another chromesn another species.
The earliest findings of this type go back to the pioneeringkvad Sturtevant on the
fruit fly [10, 11]; but it was the advent of large-scale seqirg that moved this aspect
of evolution to the forefront of genomics.

The best documented type of rearrangement isnbersion (also called reversal),
in which a block of consecutive genes is removed and put ba¢the same) place in
the opposite orientation (on the other strand, as it wereg. Most fundamental com-
putational question then becomes: given two genomes, hiasieetly can such an op-
eration as inversion transform one genome into the other@Sin inversion does not
affect gene content (the block is neither shortened nortltesmgd by the operation), it
makes sense to view these operations as being applied toedspgrmutation of the
set{1,2,...,n}.

Hannenhalli and Pevzner [6, 7] showed how to represent &digarmutation of
elements as breakpoint graph (also called, more poetically, a diagram of reality and
desire), which is a graph omertices (2 vertices per element of the permutation, to
distinguish signs) with colored edges, where edges of oloe represents the adjacen-
cies in one permutation and edges of the other color thoskeirother permutation.



2 K.M. Swenson, Y. Lin, V. Rajan, B.M.E. Moret

In such a graph, every vertex has indegree 2 and outdegree Roatihe graph has a
unique decomposition into cycles of even length, where tiges of each cycle alter-
nate in color. Hannenhalli and Pevzner introduced the netafhurdles andfortresses
and proved that the minimum number of inversions needednearbone permutation
into the other (also called “sorting” a permutation) is giv®y the number of elements
of the permutation, minus the number of cycles, plus the rermobhurdles, and plus
1 if a fortress is present. Caprara [5] showed that hurdlas aegare feature in a ran-
dom signed permutation. Bergeron [2] provided an altercladeacterization in terms of
framed common intervalsand went on to show thahsafeinversions, that is, inversions
that could create new obstructions such as hurdles, wer§3arvhen restricted to adja-
cency creating inversions. Kaplan and Verbin [8] capitadinn these two findings and
proposed a randomized algorithm that sorts a signed petionitaithout paying heed
to unsafe inversions, finding that, in practice, the alponihardly needed any restarts
to provide a proper sorting sequence of inversions, althahgy could not prove that
it is in fact a proper Las Vegas algorithm.

In this paper, we revisit Caprara’s complex proof and prexddimple proof, based
on the framed intervals introduced by Bergeron, that thébabdity that a random
signed permutation onelements contains a hurdle@n—2); we then extend this ap-
proach to prove that the probability that such permutatntains a fortress i®(n~1%).
Finally, we revisit and extend Bergeron’s result on unsadeiisions. Her result is lim-
ited to inversions that create new adjacencies, but thesea #ine minority: in a permu-
tation without hurdles, any inversion that increases thmber of cycles in the break-
point graph is a candidate. Using Sankofeisdomness hypothesis[9], we show that the
probability thatany cycle-splitting inversion is unsafe &(n~2). Our results are elabo-
rated for circular permutations, but simple (and by nowdégad) adaptations show that
they also hold for linear permutations.

Framed common intervals considerably simplify our proofdged, our proofs for
hurdles and fortresses depend mostly on the relative $garciramed intervals. Our
results add credence to the conjecture made by Kaplan arihviiat their random-
ized algorithm is a Las Vegas algorithm, i.e., that it retuensorting sequence with
high probability after a constant number of restarts. lidgbecause our results suggest
that the probability of failure of their algorithm 8(1/n) when working on a permu-
tation of n elements, whereas any fixed constart & < 1 would suffice, one could
conceive taking advantage of that gap by designing an algorihat runs faster by
using a stochastic, rather than deterministic, data stracyet remains a Las Vegas al-
gorithm. Indeed, how fast a signed permutation can be sbstéaversions remains an
open question: while we have an optimal linear-time al@ponito compute the number
of inversions needed [1], computing one optimal sortingueage takes subquadratic
time—O(ny/nlogn), either stochastically with the algorithm of Kaplan and biaror
deterministically with the similar approach of Tannier édajot [12].

2 Preliminaries

Let >, denote the set of signed permutations avelements; a permutatianin this set
will be written asti= (TyTe...T,), where each elememt is a signed integer and the
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absolute values of these elements are all distinct and fhensét{1,2,...,n}. Given
such ar, a pair of element$r, 5.1) or (T, Ty ) is called aradjacency whenever we
haveri 1 — 1 =1 (for 1<i < n-1)) or y — T, = 1; otherwise, this pair is called a
breakpoint. We shall use&? to denote the set of permutations in which every permu-
tation is entirely devoid of adjacencies. Bergesbral [3] proved the following result
about|Z9|.

Lemma 1. [3] For all n> 1, 3|%,| < 29| < |2,

For any signed permutatianand the identity = (12...n), we can construct the break-
point graph for the pai(r,|). Since there is one-to-one mapping betweesnd the
corresponding breakpoint graph far, 1), we identify the second with the first and so
write thatrtcontains cycles, hurdles, or fortresses if the breakpeaglyfor(r, 1) does;
similarly, we will speak of other properties of a permutatiothat are in fact defined
only whenrtis compared to the identity permutation.

A framed commoninterval (FCI) of a permutation (made circular by considering the
first and last elements as being adjacent) is a substringegighmutationas; s, . . . kb
or -bs;sp...s-aso that

— foreachi, 1<i <k, |a] < |s| < |b], and
— for eachl, |a] < | < |b], there exists g with |sj| =1.

So the substring;s; . .. ¢ is a signed permutation of the integers that are greaterahan
and less thah; aandb form theframe. The framed interval is said to be common, in that
it also exists, in its canonical forma+(a+ 1)+(a+2)...+b, in the identity permutation.
Framed intervals can be nested. Bpan of an FCI is the number of elements between
a andb, plus two, orb—a-+ 1. A component is comprised of all elements inside a
framed interval that are not inside any nested subintephag the frame elements. A
bad component is a component whose elements all have the same sign.

In a circular permutation, a bad componénseparates bad component8 and
C if and only if every substring containing an element®fand an element o€
also has an element & in it. We say thatA protects B if A separate®8 from all
other bad components. Auperhurdle is a bad component that is protected by an-
other bad component. fortress is a permutation that has an odd number (larger than
1) of hurdles, all of which are superhurdles. The smallepegwrdles are equiva-
lent to intervalsf = «(i)+(i + 2)+(i +4)+(i + 3)+(i + 5)+(i + 1)+(i + 6) or the reverse
f'=-(i+6) (i+1)(i+5) (i+3)(i+4) (i+2)(i). Ahurdleis a bad component that
is not a superhurdle.

We will use the following useful facts about FCls; all buttf8dollow immediately
from the definitions.

A bad componentindicates the existence of a hurdle.

To every hurdle can be assigned a unique bad component.
FCls never overlap by more than two elements [4].

An interval shorter than 4 elements cannot be bad.

PowbdE
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3 The Rarity of Hurdles and Fortresses

In this section, we provide asymptotic characterizatior®( ) terms of the probability

that a hurdle or fortress is found in a signed permutatioectet! uniformly at random.
Each proof has two parts, an upper bound and a lower bounceddability, we phrase
each part as a lemma and develop it independently. We betirhwidles; the charac-
terization for these structures was already known, but tlggral proof of Caprara [5]

is very complex.

Theorem 1. The probability that a random signed permutation on n elements contains
ahurdleis@(n2).

Lemma 2 (Upper bound for shorter than n— 1). The probability that a random
signed permutation on n elements contains a hurdle spanning no more than n— 2 ele-
mentsis O(n~?2).

Proof. Fact 4 tells us that we need only consider intervals of at feas elements. Call
F<n—2 the event that a FCI spanning no more timan2 and no less than four elements
exists. CallF (i)<n—2 the event that such an FCI exists with a left endpointatVe
thus have-<,_, = 1 if and only if there exists an 1 < i < n, with F(i)<n_2 = 1. Note
thatF (i)<n—2 = 1 implies eitherms = a or 1t = -b for some FCI. Thus we can write

-2 B -1
Pr(F(2=1 < 3 5oms (1) W

sinceﬁ is the probability the right endpoint matches the left eridp(y is -aorb

if 15 is -b or a respectively) of an interval of spdrand (T:22)71 is the probability that
the appropriate elements are inside the frame. We can bbemiobability from (1) as

Fve=9 < g5ty 5 ()
M/2l-1 ;o on -1
: nTll gﬁ (nl 2)

1 <ﬁ N (”/211<n2>1>
< (S (=) + (2)
n—-1 |;(n—2) |:%+1 I
where the second term is no greater than

21 0 o\l /21 1 e
> " <y (—) " coym) 3)
I= | -

=/n+1 I=y/n+1
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and the first term can be simplified

oo

S =5 3 )
<3 () + 3 (o’

€ 0(3 x ﬁ +yvn n’5/2) =0(n?). (4)
To computePr(F<,_2) we use the union bound dPr (i, F(i)<n_2). This removes
the factor ofnTl1 from (2) yielding just the sum of (4) and (3) which@(n—?). The
probability of observing a hurdle in some subsequence ofrenpigtion can be no
greater than the probability of observing a FCI (by fact 2)u3 we know the probability
of observing a hurdle that spans no more than2 elements i©(n~2).

We now proceed to bound the probability of a hurdle that spand or n elements.
Call intervals with such spansintervals. For a bad component spanninglements
with a =i, there is only a singld = (i — 1) that must bea’s left neighbor (in the
circular order), and for a hurdle spanning- 1 elements witta = i, there are only two
configurations (¥(i-2) +(i-1) +i” and its counterpart#(i-2) -(i-1) +") that will create a
framed interval. Thus the probability that we seenainterval with a particulaa =i is
O(1/n) and the expected numberintervals in a permutation i9(1).

We now use the fact that a bad component is comprised of etsméth all the
same sign. Thus the probability that ainterval uses all the elements in its span (i.e.,
there exist no nested subintervals\d&"). Call a bad component that does not use
all of the elements in its span (i.e., there must exist nestbihtervals) dragmented
interval.

Lemma 3 (Upper bound for n-intervals). The probability that a fragmented n-interval
isahurdleisO(n~?).

Proof. We divide the analysis into three cases where the fragnmeamnieg subinterval
is of span

1.n-1,
2. 4 througlm—2, and
3. less than 4.

The existence of a subinterval of span 1 precludes the possibility of the frame el-
ements from the larger-interval being in the same component, so there cannot be a
hurdle using this frame. We have already establishedRhd-, ») is O(n~2). Thus

we turn to the third case. If an interval is bad, then the frefeenents of any fragment-
ing subinterval must have the same sign as the frame elemktits larger one. If we
view each such subinterval and each element not includedcim an interval as single
characters, we know that there must be at led@8tsigned characters. Since the signs
of the characters are independent, the probability thataiacters have the same sign

is 1/2°(M and is thus negligible.
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Thus the probability of a bad-interval isO(n~2). Now using fact 4 we conclude that
the probability of existence of a hurdle in a random signeginpgation onn elements
isO(n~?).

Lemma 4 (Lower bound). The probability that a signed permutation on n elements
has a hurdle with a span of four elementsis Q(n=2).

Proof. Call hy the hurdle with span four that starts with elemektt4l. So the subse-
quence that correspondshg must be+(4k + 1)+(4k + 3)+(4k + 2)+(4k + 4) or -(4k+
4)-(4k+2)-(4k+ 3)-(4k+ 1). We can count the number of permutations with for
instance. The four elementsiaf are contiguous in 4h— 3)!2" permutations of length
n. In c = 2/(412% of those cases, the contiguous elements form a hurdle, sottie
proportion of permutations withg is

DT oL

Similarly, the proportion of permutations that have blograndh; is

41)2(n—6)12" 1
Fo= 2l (n!Z”) o(s)

and, therefore, the proportion of permutations that halesst one ohg or hy is

n6

41(n—3)i2"
ni2n

We generalize (5) to count the proportion of permutationtk i least one of the hurdles
ho,hq,. .. ’th/4J; this proportion is at least

HJ ><C4!(nn!—2i)!2”_ (Lnéﬂ)':z ©)

2xc (5)

which isQ(n~?) since the second term@&(n—*).

Now we turn to the much rarer fortresses.

Theorem 2. The probability that a random signed permutation on n elements includes
afortressis@(n~19).

Lemma5 (Upper bound). The probability that a random signed permutation on n
elementsincludes a fortressis O(n19).

Proof. We bound the probability that at least three superhurdlesiroin a random
permutation by bounding the probability that three nonrapping bad components of
length seven exist. We divide the analysis into three caspsrtding on the numbér
of elements spanned by a bad component.

1. For one of the three FCls we have- 14<| <n-—11.
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2. For one of the three FCls we havedT < n-—15.
3. Forall FCls we have € | < 17.

As we did in Lemma 2 (equation 1), we can bound the probalitiay we get an FCI
of lengthl starting at a particular position by

1 /n-2\1
Pr(Hl)§m<l_2) . @

In the first case the probability that the FCI is a superhusd@n—11.2-") if the FCI
is not fragmented an®(n~1) if it is (using the same technique as for the proof of
Lemma 3). In the second case the probability is at most

n-15 n-17 1 ) -1
n =n —
|:217F1 kzlsz(nl)( k )
which, by the same reasoning used for equation 2 to d@{we?), is O(n~%). Thus
the first two cases both give us an upper boun@@f1°).

Fact 3 tells us that any pair of FCls can overlap only on thadlp@ints. Thus, if we
first consider the probability of finding a smallest FCI, wetrthat no other FCI will
have an endpoint inside it. So the probability of having ased=Cl, conditioned on
having a smaller first one, is dependent only on the size disteThe same reasoning
extends to the probability of having a third conditioned @vihg two smaller FCls.
Since each of the three FClIs spans less than seventeen &ethemprobability of each
FCI appearing is at mosltzﬁ;Fk = 0O(n~>), and the probability of there being at least
three of them i©O(n~1%).

We now turn to the lower bound. Consider the probability af gxistence, in a
random permutation, of a permutation with exactly threeeskiprdles spanning seven
elements each. A lower bound on this probability is a lowermubon the probability of
existence of a fortress in a random permutation.

Lemma 6 (Lower bound). The probability that a random signed permutation on n
elementsincludes a fortressis Q(n—19).

Proof. Denote byFs 7(n) the number of permutations erelements with exactly 3 su-
perhurdles spanning 7 elements each. To create such a jpéionuthoose a permuta-
tion of lengthn — 18 (with zero adjacencies and without hurdles), selecethlements,
and extend each of these three elements to a superhurdieyirenthe elements of the
permutation as needed. That is, replace elemerty the framed interval of length
7 f=+()(i+2)+(i+4)+(i +3)+(i +5)+(i + 1)+(i + 6) and rename all the elements
with magnitudej to have magnitud¢-+ 6 (for those with| j| > |i|). After extending the
three selected elements, we get a permutation elements where there are exactly 3
superhurdles each spanning 7 elements.

From Lemma 1 and the results about the rarity of hurdles flaptevious section,

we have
Far(n) > (n— 182)!2”*18 (17 O(n,z)) <n 318>
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—18
where%(l— O(n~?)) is a lower bound for the number of permutations of

lengthn — 18 (with zero adjacencies and without hurdles) @?\’glg) is the number of
ways to choose the elements for extension. Therefore we have

Fs7(n) _ (n—18)12n-18 B n—18\ 1
n2n 2 (1-0m3) ( 3 )W
€ Q(n 15 (8)

4 On the Proportion of Unsafe Cycle-splitting Inversions

Denote the two vertices representing a permutation elementthe breakpoint graph
by T andTt" (T can denote either). Think of embedding the breakpoint graph
circle as follows: we place allrRvertices on the circle so that:

1. " andrt are adjacent on the circle,
2. 1 is clockwise-adjacent tw” if and only if Ty is positive, and
3. ary is adjacent to ar’,, if and only if Iy and Ty, ; are adjacent imt

For two verticess, = 17 andv, = 11} (i # ]) that are adjacent on the circle, add the
edge(vi,v2)—a reality edge (also called a black edge); also add etigest_ ) for

all i and(1;, M )—the desire edges (also called gray edges). The breakpaiph gs
just as described in the background section, but its emhgddarifies the notion of
orientation of edges, which plays a crucial role in our statlynsafe inversions.

In the breakpoint graph two reality edges on the same cydeavergent if a
traversal of their cycle moves across each edge in the sametidn in the circular
embedding; otherwise they agevergent. Any inversion that acts on a pair of divergent
reality edges splits the cycle to which the edges belongyesely, no inversion that
acts on a pair of convergent reality edges splits their comayale. (An inversion that
acts upon a pair of reality edges in two different cycles $ymperges the two cycles.)

An inversion can be denoted by the set of elements in the gation that it rear-
range; for instance, we can write= {1, T, 1,...,7;}. The permutation obtained by
applying a inversiom on a permutatiort is denoted byt Thus, using the same
we havermi= (Ty...TE_1-Tf ... TETj11... Th). We call a pai(t,r) unsafeif tdoes not
contain a hurdle butrt does. A pair(tt,r) is oriented if rtcontains more adjacencies
thanttdoes. A pail(Tt r) is cycle-splitting if rrtcontains more cycles thardoes. (When
1tis implied from the context, we callunsafe, oriented, or cycle-splitting, respectively,
without referring tart) Note that every oriented inversion is a cycle-splittinggrsion.

A inversionr on a permutatiom is asorting inversion ifd(rm) = d(m) — 1.

Let mbe a random permutation without hurdles ara randomly chosen oriented
inversion orrt. Bergeroret al. [3] proved that the probability that the pdir, r) is unsafe
is O(n~2). However, not every sorting inversion for a permutatiorhwitt hurdles is
necessarily an oriented inversion; on the other hand, ietessarily a cycle-splitting
inversion. The result in [3] thus applies only to a small fiae of all sorting inversions.
We now proceed to studgll inversions that can increase the cycle count. We show
that, under Sankoff's randomness hypothesis (stated hetbe proportion of these
inversions that are unsafe@n—2).
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It should be noted that the orientation of a reality edge éttreakpoint graph is not
independent of the orientation of the other reality edgethé sense that some assign-
ments of orientations may produce a graph that does notsponel to a permutation.
Sankoff [9] proposed &andomness Hypothesis in this regard; it states that the prob-
abilistic structure of the breakpoint graph is asymptdiydadependent of whether or
not the orientations of the reality edges are consisterit ipermutation. In the ran-
domly constructed graphs, every reality edge induces atébre independently and
each direction has a probability éf so the expected number of reality edges with one
orientation equals that with the other orientation; our @xperiments support the ran-
domness hypothesis in this respect, as illustrated in Eigjuwhich shows the number
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# of reality edges inducing a clockwise direction

Fig. 1. The number of edges inducing a clockwise direction in cyofdength 500, taken from
random permutations. Black dots are the expected values thhe binomial distribution while
white bars are experimental values.

of edges inducing a clockwise orientation on a cycle of lbrgfi0 from 2000 random
permutations of length 750. Observations (the verticad}iawatch a binomial distribu-
tion (the black dots). This match is important inasmuch &srituch simpler to analyze
a random breakpoint graph than a random signed permutation.

The number of cycle-splitting inversions in a permutatioaquals the number of
pairs of divergent reality edges in the breakpoint graphtd@onsider a cycle contain-
ing L reality edges and ldt of them share the same orientation; the number of pairs of
divergent reality edges in this cycle is thkfl. — k). Thus, under the randomness hy-
pothesis, the expected number of pairs of divergent reatiges for a cycle containing
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L reality edges is given by

ki) <t) @)Lk(l‘ —k) = %L(L —1).

The maximum number of pairs of divergent reality edges foyaecwith L reality
edges is}le. Thus at least half the number of cycles withmeality edges have at least
712 — 1L pairs of divergent reality edges (for> 2).

Using the randomness hypothesis, Sankbfil. [9] have shown that in a random
breakpoint graph (withr2vertices) the expected number of reality edges in the larges
cycle is%n. Since the maximum number of reality edges in the largededgm, at
least half the random breakpoint graphs have a cycle wilhaestt%n reality edges. So,
for all random breakpoint graphs, at legsbf them have at leas§n? — n pairs of
divergent reality edges. Hence, under the randomness ggist the number of pairs
(T,r), wherer is a cycle-splitting inversion im, is ©(n?)|Zy|.

Let H, € 2, be the subset of permutations ovezlements where each permutation
contains one or more hurdles. Given a permutati@nH,, at most(3) pairs of (Tt r)
can yield this specifiti. Since|Hn| = ©(Z|Zx|), the number of unsafe paitsyr) is
O(|Zn]) and thus so is the number of unsafe cycle-splitting pairer&iore, under the
randomness hypothesis, for a random permutatiarky, if r is a cycle-splitting inver-
sion onT, the probability that is unsafe iSO(n~2). Unlike the result from Bergeron
about oriented inversions, this result is conditioned onk&#'s randomness hypothe-
sis, which remains to be proved. All experimental work toedgppears to confirm the
correctness of that hypothesis; and under this hypothasisesult generalizes that of
Bergeron from a small fraction of candidate inversions ta@tle-splitting inversions.

If unsafe inversions are that rare, then a randomized dlgotior sorting by inver-
sions could pick any cycle-splitting inversion (i.e., arginof divergent reality edges)
and use it as the next step in a sorting sequence; since thalplity of failure is
O(n~?) at each step (modulo some dependencies as one progresagghttite steps),
the overall probability of failure at completion (at mestteps) i<O(1/n), which is very
small. This finding is in accord with the experimental resolt Kaplan and Verbin [8],
whose algorithm proceeds in just this fashion. Moreovethasprobability of failure
is so small, it may be possible to devise a faster randomilgatithm that does not
maintain an exact record of all reality edges and cyclesrttagr time expense in the
current algorithms); such an algorithm would suffer frondiéidnal errors (e.g., using
a pair of edges that is not divergent), but would remain wsabllong as the probability
of error at each step remain€d1/n) and bounded by a fixed constant overall.

5 Conclusions

We have both simplified and extended results of Caprara amgeBen on the ex-
pected structure of signed permutations and their behavider inversions. These ex-
tensions demonstrate the mathematical power of the frameunon interval frame-
work developped by Bergeron and the potential uses of tt@oraness hypothesis pro-
posed by Sankoff to bind the asymptotic properties of vatid @ndomized breakpoint
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graphs. Our results confirm the evasive nature of hurdles, @ren more strongly, of

fortresses); indeed, these structures are both so rareramd,importantly, so hard to
create accidentally that, as our title suggests, they caatady ignored. (Of course, if

a permutation does have a hurdle, that hurdle must be haifidiecare to sort the per-

mutation; but handling hurdles takes only linear time—tbstcomes when attempting
to avoid creating a new one, i.e., when testing cycle-spdjtinversions for safeness.)
Moreover, not testing candidate inversions for safenaggests that further information
could be discarded for the sake of speed without harmingagheargence properties of
a randomized algorithm, thereby opening a new path forfasteing by inversions.
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