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Abstract. As data about genomic architecture accumulates, genomic rearrange-
ments have attracted increasing attention. One of the main rearrangement mech-
anisms, inversions (also called reversals), was characterized by Hannenhalli and
Pevzner and this characterization in turn extended by various authors. The char-
acterization relies on the concepts of breakpoints, cycles, and obstructions color-
fully named hurdles and fortresses. In this paper, we extendthe work of Caprara
and of Bergeron by providing simple and exact characterizations of the probabil-
ity of encountering a hurdle or a fortress in a random permutation, as well as the
probability of generating one in the process of sorting a permutation if one does
not take special precautions (as in a randomized algorithm,for instance).

1 Introduction

The advent of high-throughput techniques in genomics has led to the rapid accumulation
of data about the genomic architecture of large numbers of species. As biologists study
these genomes, they are finding that genomic rearrangements, which move single genes
or blocks of contiguous genes around the genome, are relatively common features: en-
tire blocks of one chromosome can be found in another chromosome in another species.
The earliest findings of this type go back to the pioneering work of Sturtevant on the
fruit fly [10, 11]; but it was the advent of large-scale sequencing that moved this aspect
of evolution to the forefront of genomics.

The best documented type of rearrangement is theinversion (also called reversal),
in which a block of consecutive genes is removed and put back in (the same) place in
the opposite orientation (on the other strand, as it were). The most fundamental com-
putational question then becomes: given two genomes, how efficiently can such an op-
eration as inversion transform one genome into the other? Since an inversion does not
affect gene content (the block is neither shortened nor lengthened by the operation), it
makes sense to view these operations as being applied to a signed permutation of the
set{1,2, . . . ,n}.

Hannenhalli and Pevzner [6, 7] showed how to represent a signed permutation ofn
elements as abreakpoint graph (also called, more poetically, a diagram of reality and
desire), which is a graph on 2n vertices (2 vertices per element of the permutation, to
distinguish signs) with colored edges, where edges of one color represents the adjacen-
cies in one permutation and edges of the other color those in the other permutation.
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In such a graph, every vertex has indegree 2 and outdegree 2 and so the graph has a
unique decomposition into cycles of even length, where the edges of each cycle alter-
nate in color. Hannenhalli and Pevzner introduced the notions ofhurdles andfortresses
and proved that the minimum number of inversions needed to convert one permutation
into the other (also called “sorting” a permutation) is given by the number of elements
of the permutation, minus the number of cycles, plus the number of hurdles, and plus
1 if a fortress is present. Caprara [5] showed that hurdles were a rare feature in a ran-
dom signed permutation. Bergeron [2] provided an alternatecharacterization in terms of
framed common intervals and went on to show thatunsafe inversions, that is, inversions
that could create new obstructions such as hurdles, were rare [3] when restricted to adja-
cency creating inversions. Kaplan and Verbin [8] capitalized on these two findings and
proposed a randomized algorithm that sorts a signed permutation without paying heed
to unsafe inversions, finding that, in practice, the algorithm hardly needed any restarts
to provide a proper sorting sequence of inversions, although they could not prove that
it is in fact a proper Las Vegas algorithm.

In this paper, we revisit Caprara’s complex proof and provide a simple proof, based
on the framed intervals introduced by Bergeron, that the probability that a random
signed permutation onn elements contains a hurdle isΘ(n−2); we then extend this ap-
proach to prove that the probability that such permutation contains a fortress isΘ(n−15).
Finally, we revisit and extend Bergeron’s result on unsafe inversions. Her result is lim-
ited to inversions that create new adjacencies, but these are in the minority: in a permu-
tation without hurdles, any inversion that increases the number of cycles in the break-
point graph is a candidate. Using Sankoff’srandomness hypothesis [9], we show that the
probability thatany cycle-splitting inversion is unsafe isΘ(n−2). Our results are elabo-
rated for circular permutations, but simple (and by now standard) adaptations show that
they also hold for linear permutations.

Framed common intervals considerably simplify our proofs;indeed, our proofs for
hurdles and fortresses depend mostly on the relative scarcity of framed intervals. Our
results add credence to the conjecture made by Kaplan and Verbin that their random-
ized algorithm is a Las Vegas algorithm, i.e., that it returns a sorting sequence with
high probability after a constant number of restarts. Indeed, because our results suggest
that the probability of failure of their algorithm isO(1/n) when working on a permu-
tation of n elements, whereas any fixed constant 0< ε < 1 would suffice, one could
conceive taking advantage of that gap by designing an algorithm that runs faster by
using a stochastic, rather than deterministic, data structure, yet remains a Las Vegas al-
gorithm. Indeed, how fast a signed permutation can be sortedby inversions remains an
open question: while we have an optimal linear-time algorithm to compute the number
of inversions needed [1], computing one optimal sorting sequence takes subquadratic
time—O(n

√
n logn), either stochastically with the algorithm of Kaplan and Verbin or

deterministically with the similar approach of Tannier andSagot [12].

2 Preliminaries

Let Σn denote the set of signed permutations overn elements; a permutationπ in this set
will be written asπ = (π1π2 . . .πn), where each elementπi is a signed integer and the
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absolute values of these elements are all distinct and form the set{1,2, . . . ,n}. Given
such aπ, a pair of elements(πi,πi+1) or (πn,π1) is called anadjacency whenever we
haveπi+1−πi = 1 (for 1≤ i ≤ n−1)) or π1−πn = 1; otherwise, this pair is called a
breakpoint. We shall useΣ0

n to denote the set of permutations in which every permu-
tation is entirely devoid of adjacencies. Bergeronet al [3] proved the following result
about|Σ0

n|.

Lemma 1. [3] For all n > 1, 1
2|Σn| < |Σ0

n| < |Σn|.

For any signed permutationπ and the identityI = (12. . .n), we can construct the break-
point graph for the pair(π, I). Since there is one-to-one mapping betweenπ and the
corresponding breakpoint graph for(π, I), we identify the second with the first and so
write thatπ contains cycles, hurdles, or fortresses if the breakpoint graph for(π, I) does;
similarly, we will speak of other properties of a permutation π that are in fact defined
only whenπ is compared to the identity permutation.

A framed common interval (FCI) of a permutation (made circular by considering the
first and last elements as being adjacent) is a substring of the permutation,as1s2 . . . skb
or -bs1s2 . . .sk-a so that

– for eachi, 1≤ i ≤ k, |a| < |si| < |b|, and
– for eachl, |a| < l < |b|, there exists aj with |s j| = l.

So the substrings1s2 . . . sk is a signed permutation of the integers that are greater thana
and less thanb; a andb form theframe. The framed interval is said to be common, in that
it also exists, in its canonical form,+a+(a+1)+(a+2) . . .+b, in the identity permutation.
Framed intervals can be nested. Thespan of an FCI is the number of elements between
a and b, plus two, orb− a + 1. A component is comprised of all elements inside a
framed interval that are not inside any nested subinterval,plus the frame elements. A
bad component is a component whose elements all have the same sign.

In a circular permutation, a bad componentA separates bad componentsB and
C if and only if every substring containing an element ofB and an element ofC
also has an element ofA in it. We say thatA protects B if A separatesB from all
other bad components. Asuperhurdle is a bad component that is protected by an-
other bad component. Afortress is a permutation that has an odd number (larger than
1) of hurdles, all of which are superhurdles. The smallest superhurdles are equiva-
lent to intervalsf = +(i)+(i + 2)+(i + 4)+(i + 3)+(i + 5)+(i + 1)+(i + 6) or the reverse
f ′ = −(i+6)−(i+1)−(i+5)−(i+3)−(i+4)−(i+2)−(i). A hurdle is a bad component that
is not a superhurdle.

We will use the following useful facts about FCIs; all but fact 3 follow immediately
from the definitions.

1. A bad component indicates the existence of a hurdle.
2. To every hurdle can be assigned a unique bad component.
3. FCIs never overlap by more than two elements [4].
4. An interval shorter than 4 elements cannot be bad.
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3 The Rarity of Hurdles and Fortresses

In this section, we provide asymptotic characterizations in Θ( ) terms of the probability
that a hurdle or fortress is found in a signed permutation selected uniformly at random.
Each proof has two parts, an upper bound and a lower bound; forreadability, we phrase
each part as a lemma and develop it independently. We begin with hurdles; the charac-
terization for these structures was already known, but the original proof of Caprara [5]
is very complex.

Theorem 1. The probability that a random signed permutation on n elements contains
a hurdle is Θ(n−2).

Lemma 2 (Upper bound for shorter than n − 1). The probability that a random
signed permutation on n elements contains a hurdle spanning no more than n−2 ele-
ments is O(n−2).

Proof. Fact 4 tells us that we need only consider intervals of at least four elements. Call
F≤n−2 the event that a FCI spanning no more thann−2 and no less than four elements
exists. CallF(i)≤n−2 the event that such an FCI exists with a left endpoint atπi. We
thus haveF≤n−2 = 1 if and only if there exists ani, 1≤ i ≤ n, with F(i)≤n−2 = 1. Note
thatF(i)≤n−2 = 1 implies eitherπi = a or πi = −b for some FCI. Thus we can write

Pr
(

F(i)≤n−2 = 1
)

≤
n−2

∑
l=4

1
2(n−1)

(

n−2
l −2

)−1

(1)

since 1
2(n−1)

is the probability the right endpoint matches the left endpoint (πl is -a or b

if πi is -b or a respectively) of an interval of spanl and
(n−2

l−2

)−1
is the probability that

the appropriate elements are inside the frame. We can bound the probability from (1) as

Pr
(

F(i)≤n−2 = 1
)

≤ 1
2(n−1)

n−4

∑
l=2

(

n−2
l

)−1

≤ 1
n−1

⌈n/2⌉−1

∑
l=2

(

n−2
l

)−1

≤ 1
n−1

(

√
n

∑
l=2

( l
n−2

)l
+

⌈n/2⌉−1

∑
l=

√
n+1

(

n−2
l

)−1)

(2)

where the second term is no greater than

⌈n/2⌉−1

∑
l=

√
n+1

(

n−2
l

)−1

≤
⌈n/2⌉−1

∑
l=

√
n+1

(1
2

)

√
n+1

∈ O(1/n2) (3)
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and the first term can be simplified
√

n

∑
l=2

( l
n−2

)l
=

4

∑
l=2

( l
n−2

)l
+

√
n

∑
l=5

( l
n−2

)l

≤
4

∑
l=2

( l
n−2

)l
+

√
n

∑
l=5

( n
n−2

√
n

n

)5

∈ O
(

3× 16
(n−2)2 +

√
n n−5/2

)

= O(n−2). (4)

To computePr(F≤n−2) we use the union bound onPr(
Sn

i=1 F(i)≤n−2). This removes
the factor of 1

n−1 from (2) yielding just the sum of (4) and (3) which isO(n−2). The
probability of observing a hurdle in some subsequence of a permutation can be no
greater than the probability of observing a FCI (by fact 2). Thus we know the probability
of observing a hurdle that spans no more thann−2 elements isO(n−2).

We now proceed to bound the probability of a hurdle that spansn− 1 or n elements.
Call intervals with such spansn-intervals. For a bad component spanningn elements
with a = i, there is only a singleb = (i − 1) that must bea’s left neighbor (in the
circular order), and for a hurdle spanningn−1 elements witha = i, there are only two
configurations (“+(i-2) +(i-1) +i” and its counterpart “+(i-2) −(i-1) +i”) that will create a
framed interval. Thus the probability that we see ann-interval with a particulara = i is
O(1/n) and the expected number ofn-intervals in a permutation isO(1).

We now use the fact that a bad component is comprised of elements with all the
same sign. Thus the probability that ann-interval uses all the elements in its span (i.e.,
there exist no nested subintervals) isO(2−n). Call a bad component that does not use
all of the elements in its span (i.e., there must exist nestedsubintervals) afragmented
interval.

Lemma 3 (Upper bound forn-intervals). The probability that a fragmented n-interval
is a hurdle is O(n−2).

Proof. We divide the analysis into three cases where the fragment-causing subinterval
is of span

1. n−1,
2. 4 throughn−2, and
3. less than 4.

The existence of a subinterval of spann−1 precludes the possibility of the frame el-
ements from the largern-interval being in the same component, so there cannot be a
hurdle using this frame. We have already established thatPr(F≤n−2) is O(n−2). Thus
we turn to the third case. If an interval is bad, then the frameelements of any fragment-
ing subinterval must have the same sign as the frame elementsof the larger one. If we
view each such subinterval and each element not included in such an interval as single
characters, we know that there must be at leastn/3 signed characters. Since the signs
of the characters are independent, the probability that allcharacters have the same sign
is 1/2O(n) and is thus negligible.
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Thus the probability of a badn-interval isO(n−2). Now using fact 4 we conclude that
the probability of existence of a hurdle in a random signed permutation onn elements
is O(n−2).

Lemma 4 (Lower bound). The probability that a signed permutation on n elements
has a hurdle with a span of four elements is Ω(n−2).

Proof. Call hk the hurdle with span four that starts with element 4k + 1. So the subse-
quence that corresponds tohk must be+(4k + 1)+(4k + 3)+(4k + 2)+(4k + 4) or −(4k +
4)−(4k + 2)−(4k + 3)−(4k + 1). We can count the number of permutations withh0, for
instance. The four elements ofh0 are contiguous in 4!(n−3)!2n permutations of length
n. In c = 2/(4!24) of those cases, the contiguous elements form a hurdle, so thetotal
proportion of permutations withh0 is

c
4!(n−3)!2n

n!2n ∈ Ω
( 1

n3

)

.

Similarly, the proportion of permutations that have bothh0 andh1 is

F2 = c2 (4!)2(n−6)!2n

n!2n ∈ O
( 1

n6

)

and, therefore, the proportion of permutations that have atleast one ofh0 or h1 is

2× c
4!(n−3)!2n

n!2n −F2. (5)

We generalize (5) to count the proportion of permutations with at least one of the hurdles
h0,h1,. . . ,h⌊n/4⌋; this proportion is at least

⌊

n
4

⌋

× c
4!(n−3)!2n

n!2n −
(⌊n/4⌋

2

)

F2 (6)

which isΩ(n−2) since the second term isO(n−4).

Now we turn to the much rarer fortresses.

Theorem 2. The probability that a random signed permutation on n elements includes
a fortress is Θ(n−15).

Lemma 5 (Upper bound). The probability that a random signed permutation on n
elements includes a fortress is O(n−15).

Proof. We bound the probability that at least three superhurdles occur in a random
permutation by bounding the probability that three non-overlapping bad components of
length seven exist. We divide the analysis into three cases depending on the numberl
of elements spanned by a bad component.

1. For one of the three FCIs we haven−14≤ l ≤ n−11.
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2. For one of the three FCIs we have 17≤ l ≤ n−15.
3. For all FCIs we have 7≤ l < 17.

As we did in Lemma 2 (equation 1), we can bound the probabilitythat we get an FCI
of lengthl starting at a particular position by

Pr
(

Fl = 1
)

≤ 1
2(n−1)

(

n−2
l −2

)−1

. (7)

In the first case the probability that the FCI is a superhurdleis O(n−11 ·2−n) if the FCI
is not fragmented andO(n−15) if it is (using the same technique as for the proof of
Lemma 3). In the second case the probability is at most

n
n−15

∑
l=17

Fl = n
n−17

∑
k=15

1
2(n−1)

(

n−2
k

)−1

which, by the same reasoning used for equation 2 to deriveO(n−2), is O(n−15). Thus
the first two cases both give us an upper bound ofO(n−15).

Fact 3 tells us that any pair of FCIs can overlap only on their endpoints. Thus, if we
first consider the probability of finding a smallest FCI, we know that no other FCI will
have an endpoint inside it. So the probability of having a second FCI, conditioned on
having a smaller first one, is dependent only on the size of thefirst. The same reasoning
extends to the probability of having a third conditioned on having two smaller FCIs.
Since each of the three FCIs spans less than seventeen elements, the probability of each
FCI appearing is at mostn∑17

l=7 Fk = O(n−5), and the probability of there being at least
three of them isO(n−15).

We now turn to the lower bound. Consider the probability of the existence, in a
random permutation, of a permutation with exactly three superhurdles spanning seven
elements each. A lower bound on this probability is a lower bound on the probability of
existence of a fortress in a random permutation.

Lemma 6 (Lower bound). The probability that a random signed permutation on n
elements includes a fortress is Ω(n−15).

Proof. Denote byF3,7(n) the number of permutations onn elements with exactly 3 su-
perhurdles spanning 7 elements each. To create such a permutation, choose a permuta-
tion of lengthn−18 (with zero adjacencies and without hurdles), select three elements,
and extend each of these three elements to a superhurdle, renaming the elements of the
permutation as needed. That is, replace element+i by the framed interval of length
7 f = +(i)+(i + 2)+(i + 4)+(i + 3)+(i + 5)+(i + 1)+(i + 6) and rename all the elements
with magnitudej to have magnitudej +6 (for those with| j| > |i|). After extending the
three selected elements, we get a permutation onn elements where there are exactly 3
superhurdles each spanning 7 elements.

From Lemma 1 and the results about the rarity of hurdles from the previous section,
we have

F3,7(n) >
(n−18)!2n−18

2

(

1−O(n−2)
)

(

n−18
3

)
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where (n−18)!2n−18

2 (1−O(n−2)) is a lower bound for the number of permutations of
lengthn−18 (with zero adjacencies and without hurdles) and

(n−18
3

)

is the number of
ways to choose the elements for extension. Therefore we have

F3,7(n)

n!2n >
(n−18)!2n−18

2

(

1−O(n−2)
)

(

n−18
3

)

1
n!2n

∈ Ω(n−15) (8)

4 On the Proportion of Unsafe Cycle-splitting Inversions

Denote the two vertices representing a permutation elementπi in the breakpoint graph
by π−

i andπ+
i (π◦ can denote either). Think of embedding the breakpoint graphon a

circle as follows: we place all 2n vertices on the circle so that:

1. π+
i andπ−

i are adjacent on the circle,
2. π−

i is clockwise-adjacent toπ+
i if and only if πi is positive, and

3. aπ◦
i is adjacent to aπ◦

i+1 if and only if πi andπi+1 are adjacent inπ.

For two verticesv1 = π◦
i andv2 = π◦

j (i 6= j) that are adjacent on the circle, add the
edge(v1,v2)—a reality edge (also called a black edge); also add edges(π+

i ,π−
i+1) for

all i and(π+
n ,π−

1 )—the desire edges (also called gray edges). The breakpoint graph is
just as described in the background section, but its embedding clarifies the notion of
orientation of edges, which plays a crucial role in our studyof unsafe inversions.

In the breakpoint graph two reality edges on the same cycle are convergent if a
traversal of their cycle moves across each edge in the same direction in the circular
embedding; otherwise they aredivergent. Any inversion that acts on a pair of divergent
reality edges splits the cycle to which the edges belong; conversely, no inversion that
acts on a pair of convergent reality edges splits their common cycle. (An inversion that
acts upon a pair of reality edges in two different cycles simply merges the two cycles.)

An inversion can be denoted by the set of elements in the permutation that it rear-
range; for instance, we can writer = {πi,πi+1, . . . ,π j}. The permutation obtained by
applying a inversionr on a permutationπ is denoted byrπ. Thus, using the samer,
we haverπ = (π1 . . .πi−1−π j . . . −πiπ j+1 . . .πn). We call a pair(π,r) unsafe if π does not
contain a hurdle butrπ does. A pair(π,r) is oriented if rπ contains more adjacencies
thanπ does. A pair(π,r) is cycle-splitting if rπ contains more cycles thanπ does. (When
π is implied from the context, we callr unsafe, oriented, or cycle-splitting, respectively,
without referring toπ.) Note that every oriented inversion is a cycle-splitting inversion.
A inversionr on a permutationπ is asorting inversion ifd(rπ) = d(π)−1.

Let π be a random permutation without hurdles andr a randomly chosen oriented
inversion onπ. Bergeronet al. [3] proved that the probability that the pair(π,r) is unsafe
is O(n−2). However, not every sorting inversion for a permutation without hurdles is
necessarily an oriented inversion; on the other hand, it is necessarily a cycle-splitting
inversion. The result in [3] thus applies only to a small fraction of all sorting inversions.
We now proceed to studyall inversions that can increase the cycle count. We show
that, under Sankoff’s randomness hypothesis (stated below), the proportion of these
inversions that are unsafe isO(n−2).
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It should be noted that the orientation of a reality edge in the breakpoint graph is not
independent of the orientation of the other reality edges, in the sense that some assign-
ments of orientations may produce a graph that does not correspond to a permutation.
Sankoff [9] proposed aRandomness Hypothesis in this regard; it states that the prob-
abilistic structure of the breakpoint graph is asymptotically independent of whether or
not the orientations of the reality edges are consistent with a permutation. In the ran-
domly constructed graphs, every reality edge induces a direction independently and
each direction has a probability of1

2, so the expected number of reality edges with one
orientation equals that with the other orientation; our ownexperiments support the ran-
domness hypothesis in this respect, as illustrated in Figure 1, which shows the number

200 220 240 260 280 300
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# of reality edges inducing a clockwise direction

# 
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Fig. 1. The number of edges inducing a clockwise direction in cyclesof length 500, taken from
random permutations. Black dots are the expected values from the binomial distribution while
white bars are experimental values.

of edges inducing a clockwise orientation on a cycle of length 500 from 2000 random
permutations of length 750. Observations (the vertical bars) match a binomial distribu-
tion (the black dots). This match is important inasmuch as itis much simpler to analyze
a random breakpoint graph than a random signed permutation.

The number of cycle-splitting inversions in a permutationπ equals the number of
pairs of divergent reality edges in the breakpoint graph forπ. Consider a cycle contain-
ing L reality edges and letk of them share the same orientation; the number of pairs of
divergent reality edges in this cycle is thenk(L− k). Thus, under the randomness hy-
pothesis, the expected number of pairs of divergent realityedges for a cycle containing
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L reality edges is given by

L

∑
k=0

(

L
k

)

(1
2

)L
k(L− k) =

1
4

L(L−1).

The maximum number of pairs of divergent reality edges for a cycle with L reality
edges is1

4L2. Thus at least half the number of cycles withL reality edges have at least
1
4L2− 1

2L pairs of divergent reality edges (forL > 2).
Using the randomness hypothesis, Sankoffet al. [9] have shown that in a random

breakpoint graph (with 2n vertices) the expected number of reality edges in the largest
cycle is 2

3n. Since the maximum number of reality edges in the largest cycle is n, at
least half the random breakpoint graphs have a cycle with at least1

3n reality edges. So,
for all random breakpoint graphs, at least1

4 of them have at least136n2− 1
6n pairs of

divergent reality edges. Hence, under the randomness hypothesis, the number of pairs
(π,r), wherer is a cycle-splitting inversion inπ, is Θ(n2)|Σn|.

Let Hn ∈ Σn be the subset of permutations overn elements where each permutation
contains one or more hurdles. Given a permutationh ∈ Hn, at most

(n
2

)

pairs of(π,r)
can yield this specifich. Since|Hn| = Θ( 1

n2 |Σn|), the number of unsafe pairs(π,r) is
O(|Σn|) and thus so is the number of unsafe cycle-splitting pairs. Therefore, under the
randomness hypothesis, for a random permutationπ ∈ Σn, if r is a cycle-splitting inver-
sion onπ, the probability thatr is unsafe isO(n−2). Unlike the result from Bergeron
about oriented inversions, this result is conditioned on Sankoff’s randomness hypothe-
sis, which remains to be proved. All experimental work to date appears to confirm the
correctness of that hypothesis; and under this hypothesis,our result generalizes that of
Bergeron from a small fraction of candidate inversions to all cycle-splitting inversions.

If unsafe inversions are that rare, then a randomized algorithm for sorting by inver-
sions could pick any cycle-splitting inversion (i.e., any pair of divergent reality edges)
and use it as the next step in a sorting sequence; since the probability of failure is
Θ(n−2) at each step (modulo some dependencies as one progresses through the steps),
the overall probability of failure at completion (at mostn steps) isO(1/n), which is very
small. This finding is in accord with the experimental results of Kaplan and Verbin [8],
whose algorithm proceeds in just this fashion. Moreover, asthe probability of failure
is so small, it may be possible to devise a faster randomized algorithm that does not
maintain an exact record of all reality edges and cycles (themajor time expense in the
current algorithms); such an algorithm would suffer from additional errors (e.g., using
a pair of edges that is not divergent), but would remain usable as long as the probability
of error at each step remainedO(1/n) and bounded by a fixed constant overall.

5 Conclusions

We have both simplified and extended results of Caprara and Bergeron on the ex-
pected structure of signed permutations and their behaviorunder inversions. These ex-
tensions demonstrate the mathematical power of the framed common interval frame-
work developped by Bergeron and the potential uses of the randomness hypothesis pro-
posed by Sankoff to bind the asymptotic properties of valid and randomized breakpoint
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graphs. Our results confirm the evasive nature of hurdles (and, even more strongly, of
fortresses); indeed, these structures are both so rare and,more importantly, so hard to
create accidentally that, as our title suggests, they can besafely ignored. (Of course, if
a permutation does have a hurdle, that hurdle must be handledif we are to sort the per-
mutation; but handling hurdles takes only linear time—the cost comes when attempting
to avoid creating a new one, i.e., when testing cycle-splitting inversions for safeness.)
Moreover, not testing candidate inversions for safeness suggests that further information
could be discarded for the sake of speed without harming the convergence properties of
a randomized algorithm, thereby opening a new path for faster sorting by inversions.
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